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We consider various one-dimensional nonequilibrium models, namely, the diffusion-limited pair-

annihilation and creation modéDPAC) and its unbiased versiofthe Lushnikov mode) the DPAC model

with particle injection, as well ashiased diffusion-limited coagulation modelDC). We study the DPAC

model using an approach based on a duality transformation and the generating function of the dual model. We
are able to compute exactly the density and correlation functions in the general case with arbitrary initial states.
Further, we assume that a source injects particles in the system. Solving, via the duality transformation, the
equations of motion of the density, and the noninstantaneous two-point correlation functions, we see how the
source affects the dynamics. Finally we extend the previous results to the DC model with help of a similarity

transformation.
DOI: 10.1103/PhysRevE.63.056112 PACS nunier02.50.Ey, 05.50rq, 82.20.Db
[. INTRODUCTION tions of low-dimensional systems. In both one- and two-

dimensional systems, diffusive mixing is inefficient and
Stochastic reaction-diffusion models play an importantleads to the building of large-scale correlations. The mean
role in the description of classical interacting many-particlefield is not adequate and in this sense exact results are desir-
nonequilibrium systems in physics and in interdisciplinaryable.
areagchemistry, biology, economics, etcUsually physical The paper is organized as follows: Following this section
systems are much too complex to be treatable analytically aie recall the stochastic-Hamiltonian formulation of Markov-
even numerically. However, in the context of critical phe-jan processes obeying a master equation. In Sec. Il we intro-
nomena, simple toy models have been shown to be useful ifuce two models: the DPAC model and the diffusion-limited
determining universal properties and understanding possiblgair-annihilation-creation model connected with a source
relationships between microscopically different processegppaci mode). In Sec. 11l we map through a duality trans-
(see, e.g.[1], and references thergin _ formation the DPAC and DPACI models on other stochastic
In this work we study, on a periodic chain, models thaty,qe|s. Sections IV and V are devoted to the detailed study
are prototypes of one-dimensional diffusion-limited reac-4¢ the DPAC model. In Sec. IV. we evaluate the exact gen-
tions. Qur main purpose I to pr.esent an apprc(wsed on erating function of the dual DPAC model. The correlation
a duality transformatiofi2] combined with generating func- functions of the DPAC model are studied in Sec. V. In Sec
tion techniqueq3]) to analyze the diffusion-limited pair- /" "o 4 the DPACI model via the duality transforma--
annihilation and creation moddDPAC) and related models. . y ty .
(fion. In Sec. VIl we show how to extend the solution ob-

In this paper we illustrate this approach by recovering known . e . -
results and deriving, in a simple and systematic manner, ad@ined for the diffusion-limited pair-annihilatiofDPA)

ditional ones and show that the method employed here inodel to the dlffusllon—l|m|tec{DC) model. Section VIII is
complementary to the traditionéee, e.g.[4—7] and refer- devoted to conclusion. _ _
ences thereinones. We also solve the dynamics of the dual !N this work we study some one-dimensional two-states
of the DPAC model, which is a biased generalization offonequilibrium systems for which the dynamics take place
Glauber's model. We believe that the method used here i@n @ periodic chain with. (even sites. The dynamics of
particularly suited to site-depend and/or disordered system®articles(of a single specigss governed by a master equa-
A more detailed presentation of the method, as well as othdfon- Each site of the lattice can be either empty or occupied
applications, will be given elsewhef8]. by a parpcle at mostthe hard-core ppn_strabmtsay, of spe-
Diffusion-annihilation and coagulation mode{® their ciesA. Itis known _that such n(_)neqwllbrlum problems can be
free-fermionic version properly describe the kinetics of reformulated as field-theoretical many-body problems. Be-
excitons in several materials: the dynamics of pho_lov_v we briefly recall the ba_13|s of the field-theoretical formu-
toexcited solitons and polarons in, e.g., chains ofltion of the master equation.
[Pt(en)][Pt(en)Cl,](BF,), called MX), where (en) de- The state of the system is represented by the] IR(_et))
notes ethylenedyamine or the fusion of photogenerated exc Zn;P({n},t)|n), where the sum runs over the 2onfigu-
tons in chains of tetramethylammonium manganese trichlotations. At sitei the local state is specified by the kéts)
ride (TMMC) [9]. Models of pair-annihilation and creation :(10)_T if the sitei is empty and”i>:(Ql)T if the sitei is
are useful to decribe problems of dimer adsorption and deoccupied by a particle of typd. We define the left vacuum
sorption[5]. (x|, where(x|==n(n|. The master equation can be rewrit-
The motivation for studying such one-dimensional sys-ten formally as an imaginary-time Schiiager equation
tems is not only their experimental relevance but also theifa/dt)|P(t))= —H|P(t)), whereH is the stochastic Hamil-
theoretical importance in the understanding of the fluctuatonian that governs the dynamics of the system. In general, it
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is neither Hermitian nor normal. Its construction from the
master equation is a well-established procedsee, e.g.4] +i
and references therginHere we specifically focus on two-
state systems so that the stochastic Hamiltonian can be re- « , ) ) ) )
(see below Probability conservatior{stochasticity ofH) | and 2r;" =0} *ig}. The operaton;=3(1-o7) is the lo-
yields (x|H=0. cal (at sitej) density operatorl(denotes the identity opera-
tor). This model(with a particle-hole transformatioprnwvas
introduced by Grynberg and co-workd& and corresponds
to a biased generalization of Lushnikov’'s mo@&0]
In this section we present two models that we will con- The constraint
sider in the sequel of the work. We begin with the DPAC
model. et+te'=h+h’ 2
We consider, without loss of generality, a periodic chain

of L (even sites on which an even number of particles with . - . .
. . . is the free-femionic condition for which the model becomes
hard-core repulsion move according to a master equation.

In the DPAC model, at each time step four events canSOIUbl.e' In the follqwmg, we assume that the Cond'.t'cﬂ?
) Is fulfilled. When, in Eq.(1), no pairs are created, i.es;

oceur: =0, the model under consideration is called DPA model

(i) A particle can jump from site to r +1 (provided the ' ;

latter was previously emphyith a probability rateh’ Let us now consider the following stochastic Hamiltonian

(i) A particle can jump from site tor —1 (provided the (with periodic boundary conditions
latter was previously emphywith a probability rateh.
(iii) A pair of particles can be created at sitegandr

4 gy 0'>r(+ 1 (1)

e’—e+(h—h’))

Il. THE DPAC AND DPACI MODELS

L

+1 (provided the latter was previously emptyith a prob- —HimPtt= 721 [(o/ +o ) (o +o)—1]
ability rate e’.
(iv) A pair of particles can be annihilated at sitesind -
r+1 (provided the latter was previously occupiedith a = 721 [oro(—1]. ©)

probability ratee.

The master equation associated to these processes can be
formulated as an imaginary time Schiger equation. Iden- This stochastic-Hamiltonian term corresponds to a single-
tifying a vacancy with a(pseudo} spin-up and a particle particle “source” that injects in the system, with rate
with a (pseudo} spin-down the stochastic Hamiltonian can particles at sitej <L and L whenever both the sites were
be written in terms of Paulipseudoyspin-1/2 operators as Previously vacant. If both the sitgs<L andL were previ-

follows: ously occupied, the source annihilatesith rate y) both
particles. When one of the sitgs<L or L is occupied and
. ! ’ input H . T
_ €' —e+(h—h") the other empty, the effect éf (with rate ) is to fill in
HDPAC= 21 HrD,rPff with HE,Pff= (f) oy the previously vacant site and to empty the previously occu-
"~ pied one. In Eq(3), the term ing| is an artifact due to the
e —e—(h=h")\ , e'+et+h+h’ periodicity of the problembecause of the duality transfor-
+ - Ori1t - mation, see next sectipand preserves the parity of the sys-

tem described by the stochastic Hamiltoniah®"A¢!
e'+6—h—h') , =HDPACL HinPUt The steady state as well as the density-
-4 (070741 relaxation time of such a systefim its translationally invari-
ant version have been studiefb] for the case where there
was input of particlegi.e., y>0) but no pair-creatiofi.e.,

€' =0) for an infinite systenfwhere there is no problem of
boundary conditions and one can consider simplg'mPut
=93, [0F—1]). Here we obtain the exact density of the
0IPPACI model and study the interplay between the pair cre-

!Because the DPAC model preserves the parity of the number of . .
particles, we should split the dynamics in an even and an odd segtlon and the sourcksee Eq(38)]. We also obtain the two-

tor. Here we focus specifically, and without loss of generality, on

the even sector. The treatment of the odd sector is similar except for

the boundary conditionsee, e.g[2]). The parity of the number of ~ ?Recently we have proposdd?2] an approach to study analyti-
particles does not play an important role for the dynamics of thecally the DPAC model beyond the free-fermion c&&g Although
model. The restriction to the even sector is performed projecting outhe approac12] provides the correct long-time behavior of the
the odd sector from the initial state, sg9(0)), with help of the  density and correlation functiongincluding the subdominant
projectors(1+ Q) with Q=110 . In the following, for simplicity,  termg, it turns out to be less general than expedtEl. It is not the

we will often call |P(0)) its even-sector projection, i.e., purpose of this work to study the limits of the approach devised in
|P(0))¢"=3(1+Q)|P(0)). [12].

X(1=ofor )+

X Ly
0,011

6'—6—(h—h’))

+o¥o), ) +i 7
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point noninstantaneous correlation functions of fh@bi-  model and the the duality transformati®) maps this model
ased DPACI model in the absence as well in the presence obnto Glauber-Ising modé¢b,7,15,16. .
pair creation. Let us also consider the dual transformatiorHotPUt (3)

L L

[ll. THE DUALITY TRANSFORMATION fineui S V- ipinputy 5 (=%, o* )
Following [2,4], we introduce a set of operators that r=1 r=1
forms a periodic Temperley-Lieb algebta quotient of a @)
Hecke algebra Further, we define an unitary transformation

that allows to map the DPAC model on another stochasti®vith periodic boundary conditions and thu

model for which we are able to calculate the generating func= HPPAC4 Finput,

é{DPACI

tion.
Let us define the following operators in terms of Pauli |\, GENERATING EUNCTION OE (THE DUAL OF )
Spin-matrices: THE DPAC MODEL
1 1 In the first part of the paper we study exact properties of
== x i<L: e,== 252 . . ,
&j-1=5(1+0)), 1IsjsL) ey=5(1+0joj,q), DPAC model using generating function of the dual model

(6), which are explicitly computed in this section. We re-
1 . cover known results and produce new ones.
IsjsL-1; e=ey=5(1+Coial), 4) We introduce Grassmann numbesps, with their usual
anticommuting propertie$7m, .7, =0, ¥m,n. Following

whereCEHj:1 ____ Lot [3], we consider the quantity

We define thgunitary) duality transformatiorV/ by

oL 2L-1 G+({77,j},t)5<;
vEexp(—E UY) II (a+ie—~11;. (5
4 =17 k=
=<H (1i77j0,~2)(t)>, 8

=1

_4DPA ~
j1:[1 (1= pohe ™ Ct‘ P(O)>

The dual(unitary) transformatiorV is also called domain-
wall transformation2,4] because of its physical interpreta- ) o ]
tion. In[2] this duality transformation has been introduced towhere |P(0)) symbolically denotes the initial state in the
study the zero-temperature Ising model with help of its free-0riginal model (1) with an even number of particlesee
fermionic dual counterparthe DPA model, where’=0).  footnote 2 and |P(0))=V1P(0)). G=({»,j}.t) is the
The transformatiori5) connects a stochastic model with pe- generating functionof the dual model and its derivatives
riodic boundary conditions to other stochastic models withprovide correlation function of the dual modés), e.g.,

the same boundary conditiop]. (ofaf)()=0°G*({m.i}.0)Imdnil -0 (<)).
Let us define the dual version of the stochastic Hamil- It has to be emphasized that at this stage all the correla-
tonian(1) tion functions obtained from the generating function
. G ({7.j},t) are correlators of the dual mode). For the
[IDPACZ\/~14DPAC [oPAC= S [DPAC () sequel, we introduce the following notations:
r r,r 1 < r
=t b_h+h’+e+e’ _h=h"+e—¢
with periodic boundary conditions! , ,=o%, r<L. - 2 o= 2 ’
From now on, we work with the dual modé&) and ob-
tain information on the original modell) [with the con- h'—h+e—¢€'  _ _
straint(2)]. Notice that the dual modé®) is still a stochastic d= Y c=c+d=e—€', d=c—d=h-h'.
one because, by construction(y|HPPAC=(y|HPPAC 9)

=(X|APPAC=(x|HPP*°=0 since(x|V=(x|=a(x|, where . . .

a=[(-1)-"Y2]e™HL=1 [2]is a constant that plays no It is useful to separate the generating functlor_l into two

role in the following and therefore will be omitted. parts. The one that gzer_lerates the corrglator_s witrem
Here we consider the domain-wall duality transformation?Umber of operatorss* is denoted byV ({mi}t). The

(5) and formally obtaifwhen Eq.(2) is fulfilled] a generat- functional, calledy ({n,j}z,t), generates correlators with an

ing function for the dual model. The latter will allow to solve ©dd number of operators”, i.e.,

the DPAC model completely. In the third part of this work, 1

we translate our results into the language of the diffusion- * A Cre ; - ;

limited coagulation model. Vemihn= Z[G {nip=G ({ni}0]. (10
The duality transformatiof6) maps the DPAC modéll)

onto a biased generalization of the Glauber-Ising m¢sEl  When the free-fermionic constrai(®) is fulfilled, the equa-

In the absence of bias, modél) reduces to Lushnikov's tion of motion of the generating function™ can be rewrit-
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ten using the properties of Grassmann algebra as a first-ordRelabeling the sites that now run fromL/2+1 to L/2, the
partial differential equation that can be solved by the methogong-time behavior follows as(o(t))—(a(0))ye” GOt
of characteristic$3,17]

VE({njht)
1
= ([ I {1+ nfoft=0}=]1 {1~ #)of(t=0)}
2 =1 =1

X exr{

where zy=e""'S{_ {F*(t)};;'n; and (in the thermody-
namics limit,L — o),

>

kg k

: 11

gkz Ty M, Koy k(D)

. 1 2m
(F-),—ikl(t)=gjo depexifi(j—k) o

+{2c cos¢p—de "*}t]

=600, (Ab), (12

Kiilvjz(t) =z i1 e72btkzk Zke k) jlfkl(‘ét)l jszz(‘C‘t)
2>ky

_Ijlsz(Et)ljszl(Et)}v J2>01, (13

where thel ,(w)’s are the usual modified Bessel function of
first kind, z=(b— Vb?—c?)/c, A=+c?-d? and5 '=(c
—d)/(c+4d).

According to the definition of the generating functiq8$

~(e” =Y 51 /A1) f(5), where 6 t=(c—d)/(c+d), A
=\c?—d?, and f(u)=3,e"[(oy(0))—((0))], which is
considered to be an analytic function. This result generalizes
recent result$14] obtained for the biased zero-temperature
Glauber’'s model.

V. DENSITY AND CORRELATION FUNCTIONS
OF THE DPAC MODEL

A. Density and correlation functions for arbitrary initial states

In the previous section, we have obtained an explicit ex-
pression for the generating function of the dual mddele
Eqg. (5)] and we have shown how to compute correlation
functions for the dual mode(6). In this section we show
how to relate correlation functions of the dual mo¢@l to
the correlation function of the original DPAC modd).

Here we are especially interested in density-density cor-
relation functions

<njl . an>(t):(1/2n)<(1_8-121_1&121)

X(1=0f _107)---(1=0f 107 (D),

J1<j2<---<|n

and (10), the instantaneous correlation functions of the duaWvhere the symbob” means that the mean valge?)(t) is

model (6) are obtained by taking partial derivatives of
V=({n,j}t) [Eg. (11)]. If one considers the mean value of
an observabl®© of the original DPAC procesél), it's dual

counterpart is denoted (1)) as
(O(1)=(x|Oe~ """ P(0))
=(xIV(v-tov)(v le ")V 2ip(0))
=(0(1)),

and therefore the dual counterpart of the observ@blésay,
n=3(1-of)} is 0=V 'oVin)=3(1- 0} ;o7)}.

For the unbiased DPAC modéle., Lushnikov’'s model,
where h=h'), we thus recover Glauber's original result

[16]. For the biased DPAC situation, the generating function

(11 not only provides the complete solution of the DPAC

model but also the complete solution of the biased generali-

zation of Glauber’s model with transition raéf o;— — o)
=D{1-[d/(2D)]ailoi-1+(c/d)o;. 1]}, where o;==*1
are the usual spin variables and we assume the Date
=h/2. For this model we obtain

V- ({mi})
I -0

=e " gy (0)) <D, (AL).

(oj(t))=

taken with respect to the dual modé).
In what follows, we need to know how to connect the
initial correlation functions of the dual modé&) with those

of the original DPAC model (1), (&jzl~ . -&jZZH)(O)
=(Ij,<j<j, [1-2n(0)]), j1<j2<' - <]zn-
In particular, for the density, we have

% )
Ny 10

1
<nr>(t): E( 1

{n}=0

1—-z+e 20> 21, _1(2¢t) — 1, 1(2Ct)}
n>0

|

X 5(j1+j272r+1)/2{|j1+17r(At)|jzfr(At)

_Ijlfr(At)lszrlfr(At)}’

2

—2bt

2

e

>

i2>i1

[

j1<i<iz

[1—2nj(0)]>

(14

whereA=+/c?—d?, § '=(c—d)/(c+d) and we have rela-
beled the sites indices that now run frorL/2+1 to L/2.

We can also obtain the noninstantaneous two-point corre-
lation functions:
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1 ~ model (for the class of translationally invariant systems un-
<nr(t)ns(0)>=§ 1-z+e 2 21, 4(2¢t) der consideration heyelt has been shown to be a general
n=0 property of the DPAC model, which holds true for every
_ e 2bt instantaneouscorrelation functiond18]. We have seen in
—lhra(2et)}| - 5 Egs. (15) and (16) that this property is lost for noninstanta-
neous correlation functions.

For translationally invariant systems and with help of the
><_§>:_ <ns(0), <H - [1-2n;(0)] properties of Bessel functions, EQ.4) leads to
J2=11 J1<Is<]2
x Sliatia— 2r+1)/2{|J1+l r(At)lJ2 ((At) <,} r+s>(t) <UOU§>(t):Zs+e—2btz [<<}é(}§/>(0)_
s'>0
~1j, - (AD] 41 (AD}. (15)

X[lg_g(2¢t)— g s(2Ct)], s>0
To obtain the long-time behavior @i5), we introduce the = ~ ) o ]
Fourier transform of the initial state from which we have where z=(b—+b“—c)/c. This result coincides with

substracted the homogeneous part, Glauber’s origin_al ong16]. o
Let us consider the uncorrelated case where initially

fuw.s)=3 ei(”jl+”12)(<ns(0) M znon) M M)O=DOI. iwiny> > This -
J1.02 i1<i<i» p||ES

(0%,52)(0)={((1—2ny)- - - (1—2ng))(0)=[1—2p(0)]*

and therefore,

—[1-2p(0)]2711]O(jo—jy),

where®(j,—j,)=1 if j,>], and vanish otherwise. With

—2bt
the steepest-descendent method, we obtain|rfpts|<L p()=2= {1 (0252 t)}_(l 2 _e ™
—0 andbt,[c|t,At>1, 2
e 20-0) x 2 [{1-2p(0)}¥ -
<”r(t)ns(0)>—P(t)~mf(&&s), (16) s'>0 ) )
X{lgr—1(2¢t) =g 1(2¢t)}. 17

where p(t) is the translationally invariant and uncorrelated

density studied in Eq$17)—(25). From Eq.(16), we see that To study expressiofil7) we notice that it can be rewritten
the decay of the connected correlation functiqhs) de- as

pends on the bias and is in the form of an exponential except bt

: fa T : - e~ “’'sgnc ~
for th_e urlblased~cas(ee., d=0) and when there is no pair ;) j(c0)= T([(Izl—y)lo(Zlclt)
creation(i.e., b=c). In the latter case the decay follows the

power law~ (ct) ~2. For the casel<0, because of the drift, N
the rightmost sites tend more rapidly to their steady state. +H(Z2-y)L(2[cl]+ X {(1-yHy"?
The effect of the initial state appears through the funcfjon n=2
which is assumed to be analytic. -

All the the multipoint correlation functions can be ob- —(1—22)|Z|"1}|n(2|c|t)], (18
tained in a similar and systematic way.

wherey=[1— 2p(0)]sgn~c.

For the case where=0 with e= €' >0, the density(18)
readsp(t)=3+{p(0)— 3}e *<'. From now we focus on the

In this subsection we check the results for the der@i®y  cases wheréc|#0.
in the translationally invariant DPAC model against previous
results obtained for some particular initial staftledtice with
initial density p(0)=0,1/2,1], directly by the free-fermionic
approach5,11,15,20,21 As original results, we obtain the _ _
exact asymptotic behavior of the density for uncorrelated and p(t)=p(0)e 2 14(2¢t)+ >, {1—2p(0)}" 11, (2¢ct) |,
translationally invariant states of arbitrary initial densfiy n=1
the presence as well as in the absence of pair creation (19

As one can check by direct computation, for tranlationallythjs result coincides with the result obtained[ir®].
invariant systems, the density in the DPAC model is inde-  Taking into account the asymptotic behavior of the Bessel
pendent of the biasl and thus the density of Lushnikov’'s functions I,(x) and collecting terms, we arrive at the
model coincides with the density of the generalized DPACasymptotic behavior of the density.

B. Density for translationally invariant and uncorrelated
initial states

In the absence of pair creatiofi.e., €’ =0, b=c=
>0), we simply havdimposingz=1, in Eq.(18)]
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In the massivenonuniversal regimewhenbt>|c|t>1,u=L?%|c|t<1 and|y|,z<1=0<p(0)<1, we have

e~20-leht ggnc

32c|tVxclt

p(t)—p()~

|2|(]z|+1)(15— 82| —32?) Yy +1D)(5- 8y —3y?)

(|12l =y){1-3(y+|z])}+

(1-[2))? (1-y)?

(20

The validity of Eq.(20) is restricted tdy|<1, i.e., to 0<p(0)<1, which corresponds to the convergence domain of the
geometrical series occurring in computing E80). The case(0)=0 andp(0)=1 correspond ty=1 [for p(0)=0] and

y=—1 [for p(0)=1]. As |z]<1, the residual summation over the expansiomof'l,(2[c|t) can be carried out, leading to

e—z(b—\a)t _
~-——— if p(0)=0 and T>0
Vrc|t
e 2ol |2/(1+12)) e 3
——— 1 1-3(z7|-1)+ (15—-8|z|—3z%) | if p(0)=0 and c<O
A 32(m(c|t)¥? |Z| o1
p(t)—p(*)~ ~
o2~ 2(1+]2)) N ~
——1-3(]72|- 1)+ (15-8|z|—3z%) | if p(0)=1 and c>0
32(7[c|t)¥2 1-|z]
e—z(b—\a)t _
—— if p(0)=1 and ¢<0.
Vr|c|t

Results(21) coincide with those obtained ib,21].

In the critical case, when there is no pair creatiai (
=0, b=c>0,z=1), we have forbt=ct>1, u=L?/c|t
<1, and|y|<1=p(0)<1.

1 1
p(t)= (1— - {(1—y)(3y+2)
2\ mct 16ct
15— 8y—3y? 5
—y(1+y) +0[(ct) %7 (22
(1-y)?

This result is restricted to€p(0)<1. When initially there

are no particlesp(0)=0, y=1, no dynamics take place.

The case of an initially full latticgy = —1,0(0)=1] yields
p(t)‘p(o):l=e_2°tlO(ZEt)=(1/[2\/7TEt])[1+O((Et)_l)].

A similar asymptotic result would have been obtained for
the case where there are ongirs created and no annihila-

tion (b=c=¢'>0 and e=0). In this casez=—1 and

p()=1. With Eq.(18), we obtain in the asymptotic regime

[e't>1, for an initially partially filled lattice, G=p(0)<1] a
critical decay of the density

1 1
p(t)=1— Zm(l— 16bt{(1_y)(3y+2)

15— 8y—3y?

W +O((bt)_5/2).

—y(l+y)

So far we have considered asymptotic behavior for times
that were much larger than the typical times of diffusiame
hadu=2L?/[c|t<1). Now, we study the asymptotic behav-
ior of the density both in the massive and critical regimes,
for typical times of order of the diffusion time, i.ey
=2L%/c|t~1.

In the massive, nonuniversal regime, whdrt>ct
>1, u=2L%[c|t~1, from Eq.(18), we obtain[Vy, i.e.,
V0=<p(0)=1],

e—z(b—|E|)t
p(t)—p(ee) = ——
4N 7|c|t

Z[(|1Z+ 1) —y(y+1)

+ 2 ((1-yd)y" t-(1-22)|7" Y

n=2

x @~ "I4[eI) 4 O{(|E|t)‘1}}. (23)

In the critical regime where’ =0 andbt=|c|t>1 with
u=L?/[c|t~1, from Eq.(18), we obtain[0<p(0)<1],

2

1 1-y
_|_

( y(y+1)
1_

n—1,—n2/4ct
e
5 >y

p(t)=

2V mct

=
+0| — .
(Ct)—3/2

(29)
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If one considerm2/4w|E|t< L2/47T|E|t=u/877<1, we re- and so the state®6) correspond to uncorrelated states for
cover the universal regim@2). A similar study can be per- the dual model. However, via the duality transformatigy
formed for the case where there is no pair but only pairtms state is related to a correlated initial state in the original
DPAC model(1) [4,2]. For the density of the DPAC model

. — :"": ,> . . . . _
creation[ e=0, b=c=¢€'>0, for a partially filled initial lat with initial states(26), we have[see Eq(14)]

tice: p(0)<1] and we have
—2bt

1 1 _+7Zz € S ~. ~
p(H)~1— [<1_[y(y+ )] pO= "5 5~ 2 2o 1(2Ze0)~1e1(2E0)}
(2 WEt){ ? 2a—2bt
ne - ~
+ > yn—le—nzl(4ct) . 2
2 n=2

Whenc=0 with e=¢’>0, this expression reduces to

Let us conclude this subsection with the study of the sop(t)=(1—,uzg_4ft)/2- Hereafter, we focus on the more in-
called staggered current for tibiag DPAC model. This teresting case#0.
guantity has been introduced by Grynberg and co-workers In the first term of the right-hand sidghs) of Eq. (27),
[5] to measure the flux of particles due to the bias it  we recognize the expression pft) —p(«) for an initially
vanishes for Lushnikov’'s model it is defined asJ(t) uncorrelated state witp(0)=1/2 [Eq. (17)]. When there is
=(h"ny(1=Npi1) =hnpe(1-ng))(t). In [5] this quan-  no creation of pairs of particlegie., e =0=b=c=¢
tity was computed for an initially empty lattice. Here we - ;= 1),
obtain the exact expression of this quantity for translationally _
invariant (and uncorrelated but randgnmitial states with e 21— 2 _ _
arbitrary initial densityp(0). p(t)=f[|o(20t)+ I,(2ct)]. (28
For a translational invariant system, the expression of the
staggered current is J(t)= —H[p(t)—(nmﬂnm)(t)] In fact, such initial(correlated states have been considered
=—(d/4)(1—(o%a7,,)). With the help of results of this previously by Santo§2] who computed the density for the
section, we then find diffusion-annihilation version of the DPAC modéle., €’
=0=z=1) using Jordan-Wigner transformation and the

d L free-fermionic procedures.
JH=7 p(=){p(=)—1}+e 2 3 [{1-2p(0)}% —2°'] Let us study the asymptotic behavior of the density for
s'>0 this (correlated initial state(26). To this end, we proceed as
in the previous subsection: we begin with the massive, non-
X{lg_p(2Ct)— g o(2¢t)} . (25  universal regime wherbt>|c|t>1 with u=L%/|c|t<1. In

this regime, the density decays as

The long-time behavior of this quantity follows similarly as ) — () = — (e~ 20-Y a7 SO 2(1+sanc
in Eqs. (20—(24) p(1)—p()=—( Va|e|t)[ #*(1+sgnc)
+0(([c[t)™H].
C. Density for translationally invariant but correlated
initial states On the other hand, in the critical regimgvhen € =0,

In the previous subsection, we have obtained exact resulfs=C=€>0, ct>1 with u=2L%/c|t<1), we have the fol-
for the ordered DPAC model for a class of translationallylowing power-law decay: p(t)~[(1—,u2)/2m](1
invariant and uncorrelated initial state. It is also instructive to— 1/gct).
consider translationally invariant but correlated initial states As noticed in[2], we see that although the initial state is
of the form F({a{a7{, 1})|0), which according to Eq(5) are  correlated, the long-time behavior of the density decays as
transformed  into V7 'F({ofol, 1})V|0)=F({c})|0),  t Y2 as in the uncorrelated cases. The interesting point for
where 7(O) is a functional of the operatdD. For transla- the DPA modelwheree’ =0) is, however, that the dynam-
tionally invariant systems, the density is independent of thdécs thoughcritical is no longer universal: the amplitude of
bias[18]. In the following, we focus on two classes of trans- the density(i.e., the term + ©?) depends on the initial state.
lationally invariant but correlated initial states of the form We infer that in this case initial correlations do not renormal-
F({o{o}.1})]0), namely; i) ize the dynamical exponent, yet affect the amplitude in a
nonuniversal manner.

Similarly, a power-law decay is obtained in the case

where there is no pair annihilatiorie., b=—-c=¢
>0): p(t)~1—-1/2ywbt. Notice, however, that the

1+pu 1—p
P)=11|{=~+—5~dlo},]l0) (20

We have the initial correlations asymptotic behavior is independentfand so is universal.
, , 2 ) (i) Let us now consider another class of translationally
(0)(0)=p, (ojo7 . )(0)=p invariant but correlated initial states, namely, > 0)
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1+p 1—p

1
IP(0)>E;E[ 5+ 5 0jof.2|VIO), (29

for which initial correlation functions arg oz y05)(0)
=e PsinhB[1+84/2+ (1— 85 9—28s)e Psinhg]  and
<of)(0)=efﬁsinhﬁ, where B=In1/\/u. The initial states

are therefore correlated both for the dual model and for th('f'h

DPAC model.
Notice that here the operator coding correlations reot

nearest neighbors preventing a direct Jordan-Wigner tran

formation of the expressiofR9), i.e., a direct free-fermion
approach.
The computation of the density yields

1— e—th ~ ~
p()=——+—— 2 2{l5-1(26t) ~ I5.4(2C1)}
s>0

e 2bt—5 _ _

-— sinhB(1+e #sinhB){ly(2ct) +1,(2ct)}
i -B

%(Ze‘ﬂ sinh—1)e~ Y1 ,(2ct)

—1,(2ct)}. (30)

In the first term of the rhs of Eq30), we recognize the
expression for the uncorrelated densitft) — p(¢) with an
uncorrelated initial state witp(0)=1/2 [Eq. (17)].

Whenc=0 with e=¢€'>0, Eq. (30) reduces to the fol-
lowing expression:p(t)=3—e #sinhB(3—e’sinhp)e .
Below, we focus on the case where 0.

When there are no pairs creatéice., €'=0, b=c=e¢
>0 and thusz=1), this expression reduces to

—2ct

p(t)y=[1—ef sinhB(1+e #sinhpB)] > o(2ct)

sinhpe #

+1,(2ct)} + 5

(2 sinhBe #—1)

X e 2| ((28t) — I ,(20t)). (31)

PHYSICAL REVIEW E 63 056112

1—e A[sinhB(1+e #sinhp)]

o\t

As before, in the case where there would be no pair an-
nihilation (i.e.,b=—c=€'>0), we have a power-law decay
of the densityp(t)~1—1/(2y/7bt). However, in this case
e asymptotic behavior is independentgofand so isuni-
versal

Notice that in thecritical regime the density decays as a
Tower law:p(t)~t~ 2 as for uncorrelated initial cas¢22)
and(24). We also remark that the amplitude of the long-time
behavior of the density is nonuniversal and depends on the
initial state through the parametgr (with B=1n1/\/u).

We conclude that for the correlated states under consider-
ation[Egs. (26) and (29)], initial correlations affect the dy-
namics through themplitude of the densitywhich in ab-
sence of pair creation is no longer universal. We have
observed that when there are pairs created, without pair-
annihilation, the density decays for the two classes of corre-
lated state$26) and(29) as anuniversalpower law.

+0((ct) ).

p(t)=

D. Comparison with traditional free-fermion methods

In this subsection we discuss and compare the approach
devised in this work for the study of the DPAC model with
the free-fermion methodst,5,2,10,11,15,18,31

In most traditional free-fermionic methods, the stochastic
Hamiltonian(1) is recasted via a Jordan-Wigner transforma-
tion in (free) fermion form. The resulting quadratibut gen-
erally neither Hermitian nor normaHamiltonian is then re-
formulated in the Fourier space. As the resulting
Hamiltonian is quadratic, the time dependence of the opera-
tors is simple. Such an approach is well adapted for transla-
tionally invariant systems and has been extensively used for
the study of the DPA modewhere €’ =0) with homoge-
neous initial density. Explicit results have, in particular, been
obtained for initially empty and full lattice as well as for
initial density p(0)=1/2 (see, €.9.[4,2,11,18§).

Another approach consists in diagonalizing ttiece-)
fermion version of the DPACstochastic Hamiltonian
through a Bogoliubov type rotation, dealing, in Fourier
space, with a diagonal quadratic form of the so called
pseudofermion$5,21]. This method is particularly efficient

Let us now investigate the asymptotic behavior of thefor the DPAC model in the presence of pair creatiari (

density for this(correlatedl initial state(29). This is done as

>0) but concrete results only have been obtained for lattice

in the previous subsection. We begin with the massive, nonmitially empty or completely filled5,21].

universal regime wherét>|c|t>1 and p>c implies |z|

Let us also mention that some exact results have also been

<1) with u=L?/|c|t<1. In this regime, the density decays obtained for particular nonuniform initial distribution for the

as

[(1+sgnc)e2(b-lehty
(4N [c|t]

+e PsinhpB)+0(([c[t) H].

[e #sinhB(1

p(t)—p(°)=—

On the other hand, in theritical regime (whene'=0,
b=c=e>0, ct>1, andz=1 with u=2L%/c|t<1), we
have a power-law decay

DPA and DPAC model$11,2Q.

Here, to illustrate the approach devised in this work in the
translationally invariant situation, we have recovered known
results for the density for both DPA and DPAC moddl9),

(21), (22), (24), and(28) and have extended these results to
the case of arbitrary initial densityL8), (20), (23), (25), and
(27). These results should, in principle, be also accessible by
the traditional methods described above but in the case of
arbitrary initial density 8<p(0)<1, the computations re-
quired are tedious. On the contrary, with the approach de-
vised here, previous results are recovered in a simple and
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systematic manner. Although the long-time behavior of the ¢
DPA does not depend op(0), this is not the case for the  g;Fm+1.m=—2[b+»{2MO(L—m)+1}]r (1)
general DPAC in the presence of pair creation where the

dynamics is no longer universal but depends pf0) +C[rmer+im(t) Frmsi—1m(t) e mt (1)
[through the amplitude and the power law, see HG$),
(20), (21), and(23)]. Therefore, where>0 ande’ >0, the e m-1(t)] (33

study of the long-time behavior of the density with respect to

the initial density is relevant. An important advantage of thewith the boundary conditiong =1.

present method is the fact that it is based on an explicit (i) We start with the translationally invariant problem
generating function that allows the systematic computatio{32).

of multipoint correlation functions. In addition, the method  The steady Stata corresponding to this situation obeys
employed in this work provides explicit results that are be-the difference equation

yond traditional methods: the results4)—(16) are specific

to this approach and are valid for arbitrary initial distribution
(uniform, nonuniform, correlated, eicFurthermore, this ap-
proach does not make use of the Jordan-Wigner transforma- .
tion and so we are not limited to deal with nearest-neighboffo solve Eq.(34), we make the ansatz,=AJ,. ,(c/y)
correlations[see Eqs(29)—(31)]. Another advantage of the [whereJ,(w) is the Bessel function of first kifdand take
present approach is that it can be extended to the case wfto account the following property of Bessel functions:
site-dependent DPAC model and will also be useful in thel, ;(w)+J,_1(w)=(2v/w)J ().

study of disordered version of this modé]. In this sense Therefore a=b/y—Lé) . Taking into account the

the present approach is complementary to the previous OnéSoundary cond|t|0rr0—r(0) 1, the constanaA follows as:

A= [Jb,y(c/y)] 1. The steady state of the density for the
translationally invariant systems described by E34l) reads
N=J15bry-Ls, (c/y)/Jb,y(c/y) To solve the dynamical
In this section, we consider the model described by th%quat|on(32) we seek a solution in the forii6,16], r,(t)
stochastic Hamiltoniai PPAC!= HDPAC |- jinput laccording  _ 45 g, e 2@
DPAC t M= :
to Eq. (2)] whereH andH'"P"" have been defined pre- it this ansatz(32) reduces to the following difference
viously[in Egs.(1) and(3), respectively. From a theoretical tion- n — (2T Tb—EN s — A O(L
point of view this model is interesting because it is one cas@_qlua lon. hi ?}"i'*ll q('j’*'*l_b( Ul ith CAr = A16(
where (nontrivial) nonequilibrium (the detailed balance is -1, which 1s soive ae above with an ansaq,z,_J
violated steady states can be computed exactly. =By Jir—11g(cly). We thus findB=(b—ck)/y+2I-I
To proceed with this study following the original ap- —Ldi,L, where thespectrum\,. is determined by the bound-
proach of Rac£6], we first establish the equations of motion ary conditionro=1, which impliesq,=0 and imposes the
of the two-point correlation function of the dual counterpartcondition
of these models, i.eHPPAC [defined in Eq(6)] and H"PUt _
[defined in.Eq.(7)], respectively. _ . J(b*E}\lr)/y(C/’Y)ZO (35
We obtain the equations of motion of the correlation func-
; ~“z " _ ~z " " DPAC_ (i
tions as d/dtx."fn"ﬁwfﬁ___<[‘Trzn"zm_+l H +HTPYD). The constantsB;;s are fixed by the initial condition
For the translational invariant situation, we adopt the foIIow—2 Qi =1(0) =1, =3, By dp_= (Sly)
ing notation (>0): r (t)=(0%0%,)(t)=(c50o?)(t). For vol | E e oo '

. . . L mE L . Finally, from the the spectrum '} defined by Eqg.
theAnontAransIatlonaI invariant situation, we defimeg. | (t) (35) andyBV defined aboveF? the solj?(\)ln}of E(®2) foll)gwg
=(omTm(1).

For the translational invariant system, the equation of mo- o
tion of the two-point correlation function i¢0): r,(t)=r,+2 B,.e

2{b+Y1O(L—D)}r=Cc(r s 1+ _1). (34

VI. DENSITY AND NONINSTANTANEOUS
CORRELATION FUNCTIONS FOR DPACI MODEL

AN - ~Ls (Cl),

(36)

dt'! r==2{b+ y1O(L=D}r()+¢{ri.a(t)+r-2(0)} where the inverse of the relaxation time, sa¥, is deter-
(320  mined from the smallest zero of the Bessel functi8g) and

the steady state has been obtained above.
With the definition of the duality transformatidb) as in

with the boundaryconditionry=1, where®(L—1)=1 for Eq. (14), we obtain for the density of particlggt),

<L and®(L—1)=0 forl=L
For the nontranslationally invariant case, we consider the

unbiased version of the DPAC modgtg. (1) with h=h’ t) = 1-r1(v - _ v Br ety T/
>0, i.e., Lushnikov's modéland the equation of motion of ® 2 P ,2 2 o-2n 1Y),
the correlation functions then reads>0) (37
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where the steady state isp()=(1-r,)/2=3%[1
—J(14019)(€/ ¥)1 I (b1, (C/ %) 1. In the absence of pair creation
(¢’ =0=b=c=¢e>0), we recover the results ¢6] (with
b=c=e=1).

Following Ref.[6], we can now study the relaxation time
in the limit of a weak sourcdi.e., wheny<1) and analyze
its interplay with the pair-creation terfjdescribed by If
—[c|)/2]. For the DPAC model, where’ >0 andy=0, we
have seen in Sec. V that the densifyr translationally in-
variant systems decays exponentially fast in time as
~exf—2(b—[c))t]. In [6] it has been shown that in the ab-
sence of pair creatiofi.e., b=c=¢e>0) the density of the
DPAI model decays as e™ 7% Here we will study the case
where both pair creationb(c>0) and the source termy(
=0) are present.

As we focus on the smallest valug® of the spectrum
{IN+]}, we considery<1. In this limit, we obtain an explicit
relation thaf A, }s have to fulfill in terms of the zero's;, of
Airy function [Ai(a;)=0], namely, [u(1+\;)—1]/(1
— uNj) 3= (y?12b%) |, where p=c/b (with |u[=1)
and thea,’s are real and negative.

In the presence of pair creatidne., whenb>|c|], one

has to consider the above equation , which should be solved

for the (infinite) set ofa;’s. In doing so, we would obtain the
spectrum{\;}, which in turn provides the inverse of the
relaxation timex* =min({|\;|}). Here, we prefer to focus on

PHYSICAL REVIEW E 63 056112

To solve the dynamical equatidB3), we seek a solution
of the form
rm-%—l,m(t):rm-%—l,m+2m’,|’(972)\‘:t(:]m’+l’—m—I,m'—m
and obtain the solution of Eq33),
Fttm(D =T e+ 2 Ay e 22
m’,l’
XJb-enyiyl+m-La,, (C/Y)

XI[o-cnyry+m+i-Loy, (¢/Y), (39

where the boundary condition), /- mm-m=0 deter-
mines the spectrufi} through the condition

Jo-enyry+m-La,, (¢/)=0. (40)

The constant#\,, |, follow from the initial conditions.
With Eqgs.(14) and(39), we obtain the density of particles
(m<L),

1
(N ) (1) =Ny 1) () = > D Ay e 2t

m' 1’

X Jo—cnyiy+m(Cly)

y<1andu=<1,i.e., we assume that the pair creation term iswith

also “small” (e'<1). Therefore, the spectrum obeys the

following equation: N\;j=[3u/(u+2)][(y*2b%)Fa;|+1
—u]. In the absence of pair creati¢ire., u=1), we recover
the result of(6], \j=(y?/2b%) 4 ay].

The inverse of relaxation time* follows (y<1, €' <1,

andu=<1)
5\ 1/3 ~
vy b—c
) o] + ——

2p2

3c
* :~
c+2b

(38)

Thus the long-time behaviob¢>[c|t>1, y<1,e'<1, and
wu=1) of the density read$see EQ.(38)] p(t)—p(>)~
—(B*/2)e"2\"ct whereB* corresponds to the ter®,. for
Wh|Ch )\| r= )\* .

(i) Let us now pass to the nontranslationally invariant
linear

situation. In this case, we have to solve the
differential-difference equatio33). To do this, we follow

the same prodedure as above. The steady siate, is

inferred from the ansatEmH,m:A[JmH+a(c/y)]2 and ob-
tain a:b/2y—_I/2— Léy, . Taking into account the bound-

ary conditionr,, =1 we find (>0),
r_m+l,m=([‘Jm+ll2+b/(27)fLﬁmyL(C/V)]/
[Jbii2y) +m-La,, (S/ VD

Hereafter for notational simplicity, we will denotey, .
simply by \.

XJo-enyry+m+1(C/y) v

1 Jm+ 112+ bi(2y) (C/ 7)) ?
VNG 42
(N 1)() 2 ( Im+bi2y(€Y) “

(iii) From the solutior{41) for the density in the nontrans-
lationally invariant situation, we can obtain the noninstanta-
neous two-point correlation functions of th@nbiased
DPACI model.

With p—1=m<L,

<nm+l(t)np(0)> - <nm+1(°°)>

i

m’,1’

Xe 2N nyryem(ClY)

X J(b—cn)iy+m+1(C/Y).

The only change from Ed41) is in theB,, , that are fixed
from the initial conditions.
The spectrum{\} again follows from Eq.(40) and pro-
vides the inverse of relaxation time* asA* =min({\, j}).
With n=m—L6&,, in the limit y|n|<1, e’<1 with u
~1, the spectrum satisfy the equation

(2y)
[c(2u—1)%7]

(b+2vyn)
nj~ c

X[27 Y| +2un((27)b) Y32
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wherea; <0 are again the zeros of the airy function. oc ot bt
It has to be emphasized that steady states obtained for this p°°(t)=e~ """ [IO{Z(th h")t}+1{2(h+h")t}
DPACI model are nonequilibrium steady states in the sense
that they violate the detailed-balance condition. In the DPAC
model (where y=0), the steady states were expressed in _s§>:O {1-p(0)}Is-1{2(h+h")t}
terms of the quantityz [with p(«)=(1-—2)/2] first intro-
duced by Glaubef16] to describe the steady state of the
time-dependent Ising modélith the prescription of recov- —lseaf2(h+ h')t}]]- (43
ering, as steady state, the thermal equilibriufhus, in this

sense the steady state of the DPAC model is reminiscent ¢ tor the DPA model, for translationally invariant systems,

the states in equilibrium statistical mechanics. On the Congye instantaneous correlation functions do not depend on the

trary, the steady states of the DPACI model are genuine norkiash — ' we could also extend in a similar manner all the

equilibrium steady-states. results obtained in Sec. V to the DC model. The discussion
of the long-time behavior opPC(t) follows directly from

that of the DPA model given in Sec. VB.
VIl. CONNECTION WITH THE COAGULATION MODEL

In this section we translate the results obtained so far for VII. SUMMARY AND CONCLUSION
the DPAC model to another, free-fermionic model of sto- ) ) . )
chastic hard-core particles on a lattice, namely, the diffusion- 1hiS Work provides a complete and unified solution of
limited coagulatio(DC) model. In this model, particles can SOMe related one-dimensional nonequilibrium models.
jump from a siter to an adjacent sit@rovided it was vacait In t'he'ﬁrst part we have solved the diffusion-limited pair-
with ratesh (J+A—A+2) andh’ (A+QJ—@+A). Two annihilation-creation (DPAC) model (under the free-

adjacent particles at sitesandr — 1 can coagulate with rate fermionic constraint by an approach, alternative and
h(A+A—A+Q). Two adjacent particles at sitesand r complementary to the traditional free-fermion methods.

—1 can also coagulate with raté (A+A—J+A). Combining .domain—wall duality4,2] with a recently devel—.

It is known that(for initially uncorrelated systemshere oped. techniqu¢3], we were able to compute the g'eneratlng
is an exact duality between DPA modgihere there is no funcpon of the_ dual of _the DPAC modé_Bec. V), i.e., to
pair creation:e’=0) and the coagulation modésee, e.g., obtain correlat|0_n functiongSec. V). In this paper, we take
[4,11,19,22, and references thergirHere we briefly recall ad_vantage of this approach to recover results preypusly ob-
the transformation connecting these two stochastic modelts'lenGd [see Eqs(19), (21), (22), and (28)] by traditional
and translate the results of the DPA model. methods, extend_theigeg Eqs(18), (20), (23), (24), (29,

Applying the similarity transformation[4,11,19,22, H and(27] and derlve orlglnal onefsee £qs(14), (15), (-16)’

pp)_/lg y oL b (30), and (31)] in a simple manner. The method is very
=BHB ", B=B®B®---®B=B"", where promising for site-dependent and disordered sys{@hsave
focused on the density, the staggered-current, and the two-
1 -1 point correlation functionginstantaneous and noninstanta-
neous [see Eqgs(14), (15), and(16)]. In particular, we stud-
( ) ' ied explicitly the density(in absence as well as in presence
of pair-creation for translationally invariant systems with
arbitrary initial density and have discussed the asymptotic
behavior of these quantities in different regimes. We ob-
tained explicit expression of the staggered current in arbi-
trary translationally invarianfuncorrelated but randonini-
tial conditions[see Eq.(25)]. We investigated the densities
Yor two classes of correlatetbut translationally invariant

B=lo 2

the (stochastiz HamiltonianH of the DPA model becomes

the (stochastiz HamiltonianH of the coagulation model.
For the coagulation mod@With initial state|P’(0))], we

can express the correlation functions with help of correlatio

function of the DPA model. The density of the DC then

DG DPA _ systems. We have computed explicitly the noninstantaneous
reads(hj(t»w,(o»_:2<nj(t)>3-1\P'(0)>- For the twoD-é)omt two-point correlation functions for initially translationally in-
correlation  functions, we have<nj+r(t)nj(t)>‘pr(0)> variant and uncorrelatedbut randon states: these quantities
=4(n,. . (t)n:(t))2PA and n...(t)n:(0))2S depend on an eventual bigontrary to instantaneous corre-
B (Myer (O, )>BDP1)\P ) M OMODeroy ion functions. As a by product, we provided the solution
=2(N;+()N;(0)) 5 1pr (o)) of a biased generalization of Glauber's model, which is the

As an illustration, let us now provide the density of the dual counterpart of the DPAC model.

DC model from the expressions obtained for the DPA model In the second part we studied the density and noninstan-
(wheree’'=0) as[see Eq(14)]. The density of the transla- taneous two-point correlation functions of the diffusion-
tionally invariant DC model with uncorrelated initial state limited pair-annihilation-creation model in the presence of
[P"(0)y=[1—p(0)p(0)]" (of initial densityp) is related to  source of particle$DPACI mode). Via the domain-wall du-

the unbiased version of the DPA model with initial density ality transformation, we solved exactly the equations of mo-
p(0)/2. Thus, in this situation, with Eq14), we obtain for  tion of the correlation functions of the dual model. We ob-
the density of DC model tained the exact density and steady states for translationally
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invariant as well as nontranslationally invariant systems. We In the last part of this work, we have shown how to trans-
also computed the noninstantaneous two-point correlatiotate the results obtained for the DPA model to the diffusion-
functions. In particular, for the translationally invariant situ- limited coagulation(DC) model.

ation in the absence of the pair-creation term, we recovered

the density first computed by Ra¢é]. We extended these

results to the case where both the pair-creation teem ( ACKNOWLEDGMENT

>0) and source term were presentX0) and obtained the

relaxation time for the case when botk<1 ande’ <1 [see The support of the Swiss National Funds is gratefully

Eqg. (39)]. acknowledged.
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