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Exact solution of a class of one-dimensional nonequilibrium stochastic models
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We consider various one-dimensional nonequilibrium models, namely, the diffusion-limited pair-
annihilation and creation model~DPAC! and its unbiased version~the Lushnikov model!, the DPAC model
with particle injection, as well as~biased! diffusion-limited coagulation model~DC!. We study the DPAC
model using an approach based on a duality transformation and the generating function of the dual model. We
are able to compute exactly the density and correlation functions in the general case with arbitrary initial states.
Further, we assume that a source injects particles in the system. Solving, via the duality transformation, the
equations of motion of the density, and the noninstantaneous two-point correlation functions, we see how the
source affects the dynamics. Finally we extend the previous results to the DC model with help of a similarity
transformation.
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I. INTRODUCTION

Stochastic reaction-diffusion models play an importa
role in the description of classical interacting many-parti
nonequilibrium systems in physics and in interdisciplina
areas~chemistry, biology, economics, etc.!. Usually physical
systems are much too complex to be treatable analyticall
even numerically. However, in the context of critical ph
nomena, simple toy models have been shown to be usef
determining universal properties and understanding poss
relationships between microscopically different proces
~see, e.g.,@1#, and references therein!.

In this work we study, on a periodic chain, models th
are prototypes of one-dimensional diffusion-limited rea
tions. Our main purpose is to present an approach~based on
a duality transformation@2# combined with generating func
tion techniques@3#! to analyze the diffusion-limited pair
annihilation and creation model~DPAC! and related models
In this paper we illustrate this approach by recovering kno
results and deriving, in a simple and systematic manner,
ditional ones and show that the method employed her
complementary to the traditional~see, e.g.,@4–7# and refer-
ences therein! ones. We also solve the dynamics of the du
of the DPAC model, which is a biased generalization
Glauber’s model. We believe that the method used her
particularly suited to site-depend and/or disordered syste
A more detailed presentation of the method, as well as o
applications, will be given elsewhere@8#.

Diffusion-annihilation and coagulation models~in their
free-fermionic version! properly describe the kinetics o
excitons in several materials: the dynamics of ph
toexcited solitons and polarons in, e.g., chains
@Pt(en)2#@Pt(en)2Cl2#(BF4)4 called (MX), where ~en! de-
notes ethylenedyamine or the fusion of photogenerated e
tons in chains of tetramethylammonium manganese tric
ride ~TMMC! @9#. Models of pair-annihilation and creatio
are useful to decribe problems of dimer adsorption and
sorption@5#.

The motivation for studying such one-dimensional s
tems is not only their experimental relevance but also th
theoretical importance in the understanding of the fluct
1063-651X/2001/63~5!/056112~12!/$20.00 63 0561
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tions of low-dimensional systems. In both one- and tw
dimensional systems, diffusive mixing is inefficient an
leads to the building of large-scale correlations. The me
field is not adequate and in this sense exact results are d
able.

The paper is organized as follows: Following this secti
we recall the stochastic-Hamiltonian formulation of Marko
ian processes obeying a master equation. In Sec. II we in
duce two models: the DPAC model and the diffusion-limit
pair-annihilation-creation model connected with a sou
~DPACI model!. In Sec. III we map through a duality trans
formation the DPAC and DPACI models on other stochas
models. Sections IV and V are devoted to the detailed st
of the DPAC model. In Sec. IV, we evaluate the exact ge
erating function of the dual DPAC model. The correlatio
functions of the DPAC model are studied in Sec. V. In S
VI, we study the DPACI model via the duality transform
tion. In Sec. VII we show how to extend the solution o
tained for the diffusion-limited pair-annihilation~DPA!
model to the diffusion-limited~DC! model. Section VIII is
devoted to conclusion.

In this work we study some one-dimensional two-sta
nonequilibrium systems for which the dynamics take pla
on a periodic chain withL ~even! sites. The dynamics o
particles~of a single species! is governed by a master equa
tion. Each site of the lattice can be either empty or occup
by a particle at most~the hard-core constraint!, say, of spe-
ciesA. It is known that such nonequilibrium problems can
reformulated as field-theoretical many-body problems. B
low we briefly recall the basis of the field-theoretical form
lation of the master equation.

The state of the system is represented by the ketuP(t)&
5($n%P($n%,t)un&, where the sum runs over the 2L configu-
rations. At sitei the local state is specified by the ketsuni&
5(10)T if the site i is empty anduni&5(01)T if the site i is
occupied by a particle of typeA. We define the left vacuum

^x̃u, where^x̃u[($n%^nu. The master equation can be rewr
ten formally as an imaginary-time Schro¨dinger equation
(]/]t)uP(t)&52HuP(t)&, whereH is the stochastic Hamil-
tonian that governs the dynamics of the system. In genera
©2001 The American Physical Society12-1
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is neither Hermitian nor normal. Its construction from t
master equation is a well-established procedure~see, e.g.,@4#
and references therein!. Here we specifically focus on two
state systems so that the stochastic Hamiltonian can be
written in terms of Pauli’s operator as a~pseudo!spin chain
~see below!. Probability conservation~stochasticity ofH)
yields ^x̃uH50.

II. THE DPAC AND DPACI MODELS

In this section we present two models that we will co
sider in the sequel of the work. We begin with the DPA
model.

We consider, without loss of generality, a periodic cha
of L ~even! sites on which an even number of particles w
hard-core repulsion move according to a master equatio1

In the DPAC model, at each time step four events c
occur:

~i! A particle can jump from siter to r 11 ~provided the
latter was previously empty! with a probability rateh8.

~ii ! A particle can jump from siter to r 21 ~provided the
latter was previously empty! with a probability rateh.

~iii ! A pair of particles can be created at sitesr and r
11 ~provided the latter was previously empty! with a prob-
ability ratee8.

~iv! A pair of particles can be annihilated at sitesr and
r 11 ~provided the latter was previously occupied! with a
probability ratee.

The master equation associated to these processes c
formulated as an imaginary time Schro¨dinger equation. Iden-
tifying a vacancy with a~pseudo-! spin-up and a particle
with a ~pseudo-! spin-down the stochastic Hamiltonian ca
be written in terms of Pauli~pseudo-!spin-1/2 operators a
follows:

HDPAC5(
r 51

L

Hr ,r 11
DPAC with Hr ,r 11

DPAC5S e82e1~h2h8!

4 Ds r
z

1S e82e2~h2h8!

4 Ds r 11
z 1S e81e1h1h8

4 D
3~12s r

xs r 11
x !1S e81e2h2h8

4 D ~s r
zs r 11

z

1s r
ys r 11

y !1 i S e82e2~h2h8!

4 Ds r
xs r 11

y

1Because the DPAC model preserves the parity of the numbe
particles, we should split the dynamics in an even and an odd
tor. Here we focus specifically, and without loss of generality,
the even sector. The treatment of the odd sector is similar excep
the boundary conditions~see, e.g.,@2#!. The parity of the number of
particles does not play an important role for the dynamics of
model. The restriction to the even sector is performed projecting
the odd sector from the initial state, sayuP(0)&, with help of the
projector1

2 (11Q) with Q5)msm
z . In the following, for simplicity,

we will often call uP(0)& its even-sector projection, i.e
uP(0)&even[ 1

2 (11Q)uP(0)&.
05611
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1 i S e82e1~h2h8!

4 Ds r
ys r 11

x , ~1!

wheres j
x ,s j

y ,s j
z are the usual Pauli’s matrices acting on s

j and 2s j
6[s j

x6 is j
y . The operatornj[

1
2 (12s j

z) is the lo-
cal ~at site j ) density operator (1 denotes the identity opera
tor!. This model ~with a particle-hole transformation! was
introduced by Grynberg and co-workers@5# and corresponds
to a biased generalization of Lushnikov’s model@10#

The constraint

e1e85h1h8 ~2!

is the free-femionic condition for which the model becom
soluble.2 In the following, we assume that the condition~2!
is fulfilled. When, in Eq.~1!, no pairs are created, i.e.,e8
50, the model under consideration is called DPA model

Let us now consider the following stochastic Hamiltoni
~with periodic boundary conditions!:

2Hinput5g(
r 51

L

@~s r
11s r

2!~sL
11sL

2!21#

5g(
r 51

L

@s r
xsL

x21#. ~3!

This stochastic-Hamiltonian term corresponds to a sing
particle ‘‘source’’ that injects in the system, with rateg,
particles at sitej ,L and L whenever both the sites wer
previously vacant. If both the sitesj ,L and L were previ-
ously occupied, the source annihilates~with rate g) both
particles. When one of the sitesj ,L or L is occupied and
the other empty, the effect ofHinput ~with rateg) is to fill in
the previously vacant site and to empty the previously oc
pied one. In Eq.~3!, the term insL

x is an artifact due to the
periodicity of the problem~because of the duality transfor
mation, see next section! and preserves the parity of the sy
tem described by the stochastic HamiltonianHDPACI

[HDPAC1Hinput. The steady state as well as the densi
relaxation time of such a system~in its translationally invari-
ant version! have been studied@6# for the case where ther
was input of particles~i.e., g.0) but no pair-creation~i.e.,
e850) for an infinite system~where there is no problem o
boundary conditions and one can consider simply2Hinput

5g( r@s r
x21#). Here we obtain the exact density of th

DPACI model and study the interplay between the pair c
ation and the source@see Eq.~38!#. We also obtain the two-

of
c-

or

e
ut

2Recently we have proposed@12# an approach to study analyti
cally the DPAC model beyond the free-fermion case~2!. Although
the approach@12# provides the correct long-time behavior of th
density and correlation functions~including the subdominan
terms!, it turns out to be less general than expected@13#. It is not the
purpose of this work to study the limits of the approach devised
@12#.
2-2
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EXACT SOLUTION OF A CLASS OF ONE- . . . PHYSICAL REVIEW E 63 056112
point noninstantaneous correlation functions of the~unbi-
ased! DPACI model in the absence as well in the presence
pair creation.

III. THE DUALITY TRANSFORMATION

Following @2,4#, we introduce a set of operators th
forms a periodic Temperley-Lieb algebra~a quotient of a
Hecke algebra!. Further, we define an unitary transformatio
that allows to map the DPAC model on another stocha
model for which we are able to calculate the generating fu
tion.

Let us define the following operators in terms of Pa
spin-matrices:

e2 j 21[
1

2
~11s j

x!, 1< j <L; e2 j[
1

2
~11s j

zs j 11
z !,

1< j <L21; e0[e2L5
1

2
~11ĈsL

zs1
z!, ~4!

whereĈ[) j 51, . . . ,Ls j
x .

We define the~unitary! duality transformationV by

V[expS ip

4 (
j 51

L

s j
yD H )

k51

2L21

@~11 i !ek21#J . ~5!

The dual~unitary! transformationV is also called domain-
wall transformation@2,4# because of its physical interpreta
tion. In @2# this duality transformation has been introduced
study the zero-temperature Ising model with help of its fr
fermionic dual counterpart~the DPA model, wheree850).
The transformation~5! connects a stochastic model with p
riodic boundary conditions to other stochastic models w
the same boundary conditions@2#.

Let us define the dual version of the stochastic Ham
tonian ~1!

Ĥr
DPAC[V21Hr ,r 11

DPACV, ĤDPAC[(
r 51

L

Ĥr
DPAC ~6!

with periodic boundary conditionssL1r
# 5s r

# , r ,L.
From now on, we work with the dual model~6! and ob-

tain information on the original model~1! @with the con-
straint~2!#. Notice that the dual model~6! is still a stochastic
one because, by construction,̂x̃uHDPAC5^x̃uHr

DPAC

5^x̃uĤDPAC5^x̃uĤr
DPAC50 since^x̃uV[^x̂̃u5a^x̃u, where

a5@(21)L21/A2#ei (p/4)(L21) @2# is a constant that plays n
role in the following and therefore will be omitted.

Here we consider the domain-wall duality transformati
~5! and formally obtain@when Eq.~2! is fulfilled# a generat-
ing function for the dual model. The latter will allow to solv
the DPAC model completely. In the third part of this wor
we translate our results into the language of the diffusi
limited coagulation model.

The duality transformation~5! maps the DPAC model~1!
onto a biased generalization of the Glauber-Ising model@5#.
In the absence of bias, model~1! reduces to Lushnikov’s
05611
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model and the the duality transformation~5! maps this model
onto Glauber-Ising model@6,7,15,16#.

Let us also consider the dual transformation ofHinput ~3!

Ĥ input[(
r 51

L

V21Hr
inputV5g(

r 51

L

~12s r
xs r 11

x . . . sL21
x !

~7!

with periodic boundary conditions and thusĤDPACI

5ĤDPAC1Ĥ input.

IV. GENERATING FUNCTION OF „THE DUAL OF …

THE DPAC MODEL

In the first part of the paper we study exact properties
DPAC model using generating function of the dual mod
~6!, which are explicitly computed in this section. We r
cover known results and produce new ones.

We introduce Grassmann numbershm with their usual
anticommuting properties,$hm ,hn%50, ;m,n. Following
@3#, we consider the quantity

G6~$h, j %,t ![K x̂̃U)
j >1

~16h js j
z!e2ĤDPACtU P̂~0!L

5K )
j >1

~16h js j
z!~ t !L , ~8!

where uP(0)& symbolically denotes the initial state in th
original model ~1! with an even number of particles~see
footnote 1! and uP̂(0)&[V21uP(0)&. G6($h, j %,t) is the
generating functionof the dual model and its derivative
provide correlation function of the dual model~6!, e.g.,
^s i

zs j
z&(t)5]2G6($h, j %,t)/]h j]h i u$h%50 ( i , j ).

It has to be emphasized that at this stage all the corr
tion functions obtained from the generating functio
G6($h, j %,t) are correlators of the dual model~6!. For the
sequel, we introduce the following notations:

b[
h1h81e1e8

2
, c[

h2h81e2e8

2
,

d[
h82h1e2e8

2
, c̃[c1d5e2e8, d̃[c2d5h2h8.

~9!

It is useful to separate the generating function into t
parts. The one that generates the correlators with aneven
number of operatorssz is denoted byV 1($h, j %,t). The
functional, calledV 2($h, j %,t), generates correlators with a
odd number of operatorssz, i.e.,

V 6~$h, j %,t ![
1

2
@G1~$h, j %,t !6G2~$h, j %,t !#. ~10!

When the free-fermionic constraint~2! is fulfilled, the equa-
tion of motion of the generating functionV 6 can be rewrit-
2-3
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ten using the properties of Grassmann algebra as a first-o
partial differential equation that can be solved by the meth
of characteristics@3,17#

V 6~$h, j %,t !

5
1

2 K S )
j >1

$11h j
0s j

z~ t50!%6)
j >1

$12h j
0s j

z~ t50!% D L
3expF(

k1
(

k1.k2

hk1
hk2

Kk1 ,k2

6 ~ t !G , ~11!

where hk
0[e2bt( j 51

L $F6(t)%k j
21h j and ~in the thermody-

namics limit,L→`),

~F6! j ,k
21~ t !5

1

2pE0

2p

df exp@ i ~ j 2k!f

1$2c cosf2d̃e2 if%t#

5d ( j 2k)/2I j 2k~Dt !, ~12!

K j 1 , j 2

6 ~ t !5zj 22 j 12e22bt (
k2.k1

zk22k1$I j 12k1
~ c̃t !I j 22k2

~ c̃t !

2I j 12k2
~ c̃t !I j 22k1

~ c̃t !%, j 2. j 1 , ~13!

where theI n(w)’s are the usual modified Bessel function

first kind, z[(b2Ab22 c̃2)/ c̃, n[Ac̃22d̃2, andd21[( c̃
2d̃)/( c̃1d̃).

According to the definition of the generating functions~8!
and ~10!, the instantaneous correlation functions of the d
model ~6! are obtained by taking partial derivatives
V 6($h, j %,t) @Eq. ~11!#. If one considers the mean value
an observableO of the original DPAC process~1!, it’s dual
counterpart is denoted bŷÔ(t)& as

^Ô~ t !&[^x̂̃uÔe2ĤDPACtuP̂~0!&

[^x̃uV~V21OV!~V21e2HDPACtV!V21uP~0!&

[^O~ t !&,

and therefore the dual counterpart of the observableO $say,
nj[

1
2 (12s j

z)% is Ô[V21OV$n̂ j[
1
2 (12ŝ j 21

z ŝ j
z)%.

For the unbiased DPAC model~i.e., Lushnikov’s model,
where h5h8), we thus recover Glauber’s original resu
@16#. For the biased DPAC situation, the generating funct
~11! not only provides the complete solution of the DPA
model but also the complete solution of the biased gene
zation of Glauber’s model with transition ratev(s i→2s i)
5D$12@d/(2D)#s i@s i 211(c/d)s i 11#%, where s i561
are the usual spin variables and we assume the ratD
5b/2. For this model we obtain

^s j~ t !&5
]V 2~$h, j %!

]h j
U
$h%50

5e2bt^sk~0!&d (k2 j )/2I k2 j~nt !.
05611
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Relabeling the sites that now run from2L/211 to L/2, the
long-time behavior follows as^s j (t)&2^s(0)&e2(b2 c̃)t

;(e2(b2D)t/d jADt) f (d), where d21[( c̃2d̃)/( c̃1d̃), D

[Ac̃22d̃2, and f (u)[(ke
iuk@^sk(0)&2^s(0)&#, which is

considered to be an analytic function. This result generali
recent results@14# obtained for the biased zero-temperatu
Glauber’s model.

V. DENSITY AND CORRELATION FUNCTIONS
OF THE DPAC MODEL

A. Density and correlation functions for arbitrary initial states

In the previous section, we have obtained an explicit
pression for the generating function of the dual model@see
Eq. ~5!# and we have shown how to compute correlati
functions for the dual model~6!. In this section we show
how to relate correlation functions of the dual model~6! to
the correlation function of the original DPAC model~1!.

Here we are especially interested in density-density c
relation functions

^nj 1
. . . nj n

&~ t !5~1/2n!^~12ŝ j 121
z ŝ j 1

z !

3~12ŝ j 221
z ŝ j 2

z !•••~12ŝ j n21
z ŝ j n

z !&~ t !,

j 1, j 2,•••, j n

where the symbolŝz means that the mean value^ŝz&(t) is
taken with respect to the dual model~6!.

In what follows, we need to know how to connect th
initial correlation functions of the dual model~6! with those
of the original DPAC model ~1!, ^ŝ j 1

z
•••ŝ j 2n

z &(0)

5^) j 1, j < j 2n
@122nj (0)#&, j 1, j 2,•••, j 2n .

In particular, for the density, we have

^nr&~ t !5
1

2 S 12
]2V 1

]h r 21] r
D U

$h%50

5
1

2 F12z1e22bt(
n.0

zn$I n21~2c̃t !2I n11~2c̃t !%G
2

e22bt

2 (
j 2. j 1

K )
j 1, j < j 2

@122nj~0!#L
3d ( j 11 j 222r 11)/2$I j 1112r~Dt !I j 22r~Dt !

2I j 12r~Dt !I j 2112r~Dt !%, ~14!

whereD[Ac̃22d̃2, d21[( c̃2d̃)/( c̃1d̃) and we have rela-
beled the sites indices that now run from2L/211 to L/2.

We can also obtain the noninstantaneous two-point co
lation functions:
2-4
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^nr~ t !ns~0!&5
1

2 F12z1e22bt(
n.0

zn$I n21~2c̃t !

2I n11~2c̃t !%G2
e22bt

2

3 (
j 2. j 1

K ns~0! )
j 1, j < j 2

@122nj~0!#L
3d ( j 11 j 222r 11)/2$I j 1112r~Dt !I j 22r~Dt !

2I j 12r~Dt !I j 2112r~Dt !%. ~15!

To obtain the long-time behavior of~15!, we introduce the
Fourier transform of the initial state from which we ha
substracted the homogeneous part,

f ~u,v,s![ (
j 1 , j 2

ei (u j11v j 2)S K ns~0! )
j 1, j < j 2

@122nj~0!#L
2@122r~0!# j 22 j 1DQ~ j 22 j 1!,

where Q( j 22 j 1)51 if j 2. j 1 and vanish otherwise. With
the steepest-descendent method, we obtain forur u,usu!L

→` andbt,uc̃ut,Dt@1,

^nr~ t !ns~0!&2r~ t !;
e22(b2D)t

d2r~Dt !2
f ~d,d,s!, ~16!

wherer(t) is the translationally invariant and uncorrelat
density studied in Eqs.~17!–~25!. From Eq.~16!, we see that
the decay of the connected correlation functions~15! de-
pends on the bias and is in the form of an exponential exc
for the unbiased case~i.e., d̃50) and when there is no pa
creation~i.e., b5 c̃). In the latter case the decay follows th
power law;( c̃t)22. For the cased̃,0, because of the drift
the rightmost sites tend more rapidly to their steady st
The effect of the initial state appears through the functiof,
which is assumed to be analytic.

All the the multipoint correlation functions can be o
tained in a similar and systematic way.

B. Density for translationally invariant and uncorrelated
initial states

In this subsection we check the results for the density~14!
in the translationally invariant DPAC model against previo
results obtained for some particular initial states@lattice with
initial densityr(0)50,1/2,1#, directly by the free-fermionic
approach@5,11,15,20,21#. As original results, we obtain th
exact asymptotic behavior of the density for uncorrelated
translationally invariant states of arbitrary initial density~in
the presence as well as in the absence of pair creation!.

As one can check by direct computation, for tranlationa
invariant systems, the density in the DPAC model is ind
pendent of the biasd̃ and thus the density of Lushnikov’
model coincides with the density of the generalized DP
05611
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model ~for the class of translationally invariant systems u
der consideration here!. It has been shown to be a gener
property of the DPAC model, which holds true for eve
instantaneouscorrelation functions@18#. We have seen in
Eqs. ~15! and ~16! that this property is lost for noninstanta
neous correlation functions.

For translationally invariant systems and with help of t
properties of Bessel functions, Eq.~14! leads to

^ŝ r
zŝ r 1s

z &~ t !5^ŝ0
zŝs

z&~ t !5zs1e22bt (
s8.0

@^ŝ0
zŝs8

z &~0!2zs8#

3@ I s2s8~2c̃t !2I s1s8~2c̃t !#, s.0

where z[(b2Ab22 c̃2)/ c̃. This result coincides with
Glauber’s original one@16#.

Let us consider the uncorrelated case where initia
^ni 1

•••ni n
&(0)5@r(0)#n, i n. i n21.•••. i 1. This im-

plies

^ŝs8
z ŝ0

z&~0!5^~122n1!•••~122ns8!&~0!5@122r~0!#s8

and therefore,

r~ t !5
1

2
$12^ŝ0

zŝ1
z&~ t !%5

~12z!

2
2

e22bt

2

3 (
s8.0

@$122r~0!%s82zs8#

3$I s821~2c̃t !2I s811~2c̃t !%. ~17!

To study expression~17! we notice that it can be rewritten
as

r~ t !2r~`!5
e22bt sgnc̃

2 H @~ uzu2y!I 0~2uc̃ut !

1~z22y2!I 1~2uc̃ut !#1 (
n>2

$~12y2!yn21

2~12z2!uzun21%I n~2uc̃ut !J , ~18!

wherey[@122r(0)#sgnc̃.
For the case wherec̃50 with e5e8.0, the density~18!

readsr(t)5 1
2 1$r(0)2 1

2 %e24et. From now we focus on the
cases whereuc̃u5” 0.

In the absence of pair creation~i.e., e850, b5 c̃5e
.0), we simply have@imposingz51, in Eq. ~18!#

r~ t !5r~0!e22c̃tF I 0~2c̃t !1 (
n>1

$122r~0!%n21I n~2c̃t !G ,
~19!

this result coincides with the result obtained in@19#.
Taking into account the asymptotic behavior of the Bes

functions I n(x) and collecting terms, we arrive at th
asymptotic behavior of the density.
2-5
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In the massive~nonuniversal regime! whenbt.ucut@1,u5L2/ucut!1 anduyu,z,1⇒0,r(0),1, we have

r~ t !2r~`!;
e22(b2uc̃u)t sgnc̃

32uc̃utApuc̃ut
F ~ uzu2y!$123~y1uzu!%1

uzu~ uzu11!~1528uzu23z2!

~12uzu!2
2

y~y11!~1528y23y2!

~12y!2 G .

~20!

The validity of Eq.~20! is restricted touyu,1, i.e., to 0,r(0),1, which corresponds to the convergence domain of
geometrical series occurring in computing Eq.~20!. The casesr(0)50 andr(0)51 correspond toy51 @for r(0)50# and
y521 @for r(0)51#. As uzu,1, the residual summation over the expansion ofzn21I n(2uc̃ut) can be carried out, leading t

r~ t !2r~`!;

¦

2
e22(b2uc̃u)t

Apuc̃ut
if r~0!50 and c̃.0

2
e22(b2uc̃u)t

32~puc̃ut !3/2
S 123~ uzu21!1

uzu~11uzu!

12uzu
~1528uzu23z2!D if r~0!50 and c̃,0

e22(b2uc̃u)t

32~puc̃ut !3/2
S 123~ uzu21!1

uzu~11uzu!

12uzu
~1528uzu23z2!D if r~0!51 and c̃.0

e22(b2uc̃u)t

Apuc̃ut
if r~0!51 and c̃,0.

~21!
.

fo
-

e

es

v-
es,
Results~21! coincide with those obtained in@5,21#.
In the critical case, when there is no pair creation (e8

50, b5 c̃.0, z51), we have forbt5 c̃t@1, u5L2/uc̃ut
!1, anduyu,1⇒r(0),1.

r~ t !5
1

2Ap c̃t
S 12

1

16c̃t
F ~12y!~3y12!

2y~11y!
1528y23y2

~12y!2 G D 1O@~ c̃t !25/2# ~22!

This result is restricted to 0,r(0),1. When initially there
are no particles,r(0)50, y51, no dynamics take place
The case of an initially full lattice@y521,r(0)51# yields

r(t) ur(0)51
5e22c̃tI 0(2c̃t)5(1/@2Ap c̃t#)@11O„( c̃t)21

…#.
A similar asymptotic result would have been obtained

the case where there are onlypairs created and no annihila
tion (b5 c̃5e8.0 and e50). In this casez521 and
r(`)51. With Eq.~18!, we obtain in the asymptotic regim
@e8t@1, for an initially partially filled lattice, 0<r(0),1] a
critical decay of the density

r~ t !512
1

2Apbt
S 12

1

16bt F ~12y!~3y12!

2y~11y!
1528y23y2

~12y!2 G D 1O„~bt!25/2
….
05611
r

So far we have considered asymptotic behavior for tim
that were much larger than the typical times of diffusion~we
hadu52L2/uc̃ut!1). Now, we study the asymptotic beha
ior of the density both in the massive and critical regim
for typical times of order of the diffusion time, i.e.,u
52L2/uc̃ut;1.

In the massive, nonuniversal regime, whenbt. c̃t

@1, u52L2/uc̃ut;1, from Eq. ~18!, we obtain@;y, i.e.,
;0<r(0)<1],

r~ t !2r~`!5
e22(b2uc̃u)t

4Apuc̃ut
F uzu~ uzu11!2y~y11!

1 (
n>2

„$~12y2!yn212~12z2!uzun21%

3e2n2/(4uc̃ut)
…1O$~ uc̃ut !21%G . ~23!

In the critical regime whene850 andbt5uc̃ut@1 with
u5L2/uc̃ut;1, from Eq.~18!, we obtain@0,r(0)<1#,

r~ t !5
1

2Ap c̃t
F S 12

y~y11!

2
D 1

12y2

2
(
n>2

yn21e2n2/4c̃tG
1OS 1

~ c̃t !23/2D . ~24!
2-6
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If one considersn2/4puc̃ut,L2/4puc̃ut5u/8p!1, we re-
cover the universal regime~22!. A similar study can be per
formed for the case where there is no pair but only p
creation@e50, b5 c̃5e8.0, for a partially filled initial lat-
tice: r(0),1] and we have

r~ t !;12
1

~2Ap c̃t !
F S 12

@y~y11!#

2
D

1
~12y2!

2
(
n>2

yn21e2n2/(4c̃t)G .

Let us conclude this subsection with the study of the
called staggered current for the~bias! DPAC model. This
quantity has been introduced by Grynberg and co-work
@5# to measure the flux of particles due to the bias~so it
vanishes for Lushnikov’s model!: it is defined asJ(t)
[^h8nm(12nm11)2hnm11(12nm)&(t). In @5# this quan-
tity was computed for an initially empty lattice. Here w
obtain the exact expression of this quantity for translationa
invariant ~and uncorrelated but random! initial states with
arbitrary initial densityr(0).

For a translational invariant system, the expression of
staggered current is J(t)52d̃@r(t)2^nm11nm&(t)#

52(d̃/4)(12^ŝ j
zŝ j 12

z &). With the help of results of this
section, we then find

J~ t !5
d̃

4 H r~`!$r~`!21%1e22bt (
s8.0

@$122r~0!%s82zs8#

3$I s822~2c̃t !2I s812~2c̃t !%J . ~25!

The long-time behavior of this quantity follows similarly a
in Eqs.~20!–~24!.

C. Density for translationally invariant but correlated
initial states

In the previous subsection, we have obtained exact res
for the ordered DPAC model for a class of translationa
invariant and uncorrelated initial state. It is also instructive
consider translationally invariant but correlated initial sta
of the formF($s j

xs j 11
x %)u0&, which according to Eq.~5! are

transformed into V21F($s j
xs j 11

x %)Vu0&5F($s j
x%)u0&,

whereF(O) is a functional of the operatorO. For transla-
tionally invariant systems, the density is independent of
bias@18#. In the following, we focus on two classes of tran
lationally invariant but correlated initial states of the for
F($s j

xs j 11
x %)u0&, namely;~i!

uP~0!&[)
j

S 11m

2
1

12m

2
s j

xs j 11
x D u0& ~26!

We have the initial correlations

^s j
z&~0!5m, ^s j

zs j 8Þ j
z &~0!5m2
05611
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and so the states~26! correspond to uncorrelated states f
the dual model. However, via the duality transformation~5!,
this state is related to a correlated initial state in the origi
DPAC model~1! @4,2#. For the density of the DPAC mode
with initial states~26!, we have@see Eq.~14!#

r~ t !5
12z

2
1

e22bt

2 (
s.0

zs$I s21~2c̃t !2I s11~2c̃t !%

2
m2e22bt

2
$I 0~2c̃t !1I 1~2c̃t !%. ~27!

When c̃50 with e5e8.0, this expression reduces t
r(t)5(12m2e24et)/2. Hereafter, we focus on the more in
teresting casec̃5” 0.

In the first term of the right-hand side~rhs! of Eq. ~27!,
we recognize the expression ofr(t)2r(`) for an initially
uncorrelated state withr(0)51/2 @Eq. ~17!#. When there is
no creation of pairs of particles~i.e., e850⇒b5 c̃5e
.0, z51),

r~ t !5
e22c̃t~12m2!

2
@ I 0~2c̃t !1I 1~2c̃t !#. ~28!

In fact, such initial~correlated! states have been considere
previously by Santos@2# who computed the density for th
diffusion-annihilation version of the DPAC model~i.e., e8
50⇒z51) using Jordan-Wigner transformation and t
free-fermionic procedures.

Let us study the asymptotic behavior of the density
this ~correlated! initial state~26!. To this end, we proceed a
in the previous subsection: we begin with the massive, n
universal regime wherebt.ucut@1 with u5L2/ucut!1. In
this regime, the density decays as

r~ t !2r~`!52~e22(b2 c̃)t/4Apuc̃ut !@m2~11sgnc̃!

1O„~ uc̃ut !21
…#.

On the other hand, in the critical regime~when e850,
b5 c̃5e.0, c̃t@1 with u52L2/uc̃ut!1), we have the fol-

lowing power-law decay: r(t);@(12m2)/2Ap c̃t#(1
21/8c̃t).

As noticed in@2#, we see that although the initial state
correlated, the long-time behavior of the density decays
t21/2 as in the uncorrelated cases. The interesting point
the DPA model~wheree850) is, however, that the dynam
ics thoughcritical is no longer universal: the amplitude o
the density~i.e., the term 12m2) depends on the initial state
We infer that in this case initial correlations do not renorm
ize the dynamical exponent, yet affect the amplitude in
nonuniversal manner.

Similarly, a power-law decay is obtained in the ca
where there is no pair annihilation~i.e., b52 c̃5e8
.0): r(t);121/2Apbt. Notice, however, that the
asymptotic behavior is independent ofm and so is universal.

~ii ! Let us now consider another class of translationa
invariant but correlated initial states, namely, (m.0)
2-7
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uP~0!&[
1

a )
j

S 11m

2
1

12m

2
s j

xs j 12
x DVu0&, ~29!

for which initial correlation functions arê ss>0
z s0

z&(0)
5e2b sinhb@11ds,1/21(12ds,022ds,1)e

2b sinhb# and
^s j

z&(0)5e2b sinhb, where b[ ln 1/Am. The initial states
are therefore correlated both for the dual model and for
DPAC model.

Notice that here the operator coding correlations arenot
nearest neighbors preventing a direct Jordan-Wigner tr
formation of the expression~29!, i.e., a direct free-fermion
approach.

The computation of the density yields

r~ t !5
12z

2
1

e22bt

2 (
s.0

zs$I s21~2c̃t !2I s11~2c̃t !%

2
e22bt2b

2
sinhb~11e2b sinhb!$I 0~2c̃t !1I 1~2c̃t !%

1
sinhbe2b

2
~2e2b sinhb21!e22bt$I 0~2c̃t !

2I 2~2c̃t !%. ~30!

In the first term of the rhs of Eq.~30!, we recognize the
expression for the uncorrelated densityr(t)2r(`) with an
uncorrelated initial state withr(0)51/2 @Eq. ~17!#.

When c̃50 with e5e8.0, Eq. ~30! reduces to the fol-

lowing expression:r(t)5 1
2 2e2b sinhb(3

22eb sinhb)e24et.

Below, we focus on the case wherec̃5” 0.
When there are no pairs created~i.e., e8[0, b5 c̃5e

.0 and thusz51), this expression reduces to

r~ t !5@12eb sinhb~11e2b sinhb!#
e22c̃t

2
$I 0~2c̃t !

1I 1~2c̃t !%1
sinhbe2b

2
~2 sinhbe2b21!

3e22c̃t$I 0~2c̃t !2I 2~2c̃t !%. ~31!

Let us now investigate the asymptotic behavior of t
density for this~correlated! initial state~29!. This is done as
in the previous subsection. We begin with the massive, n
universal regime wherebt.ucut@1 and (b. c̃ implies uzu
,1) with u5L2/ucut!1. In this regime, the density decay
as

r~ t !2r~`!52
@~11sgnc̃!e22(b2uc̃u)t#

@4Apuc̃ut#
†e2b sinhb~1

1e2b sinhb!1O„~ uc̃ut !21
…‡.

On the other hand, in thecritical regime ~when e850,
b5 c̃5e.0, ct@1, and z51 with u52L2/uc̃ut!1), we
have a power-law decay
05611
e

s-

n-

r~ t !5
12e2b@sinhb~11e2b sinhb!#

2Ap c̃t
1O„~ct!23/2

….

As before, in the case where there would be no pair
nihilation ~i.e.,b52 c̃5e8.0), we have a power-law deca
of the densityr(t);121/(2Apbt). However, in this case
the asymptotic behavior is independent ofm and so isuni-
versal.

Notice that in thecritical regime, the density decays as
power law:r(t);t21/2 as for uncorrelated initial cases~22!
and~24!. We also remark that the amplitude of the long-tim
behavior of the density is nonuniversal and depends on
initial state through the parameterm ~with b5 ln 1/Am).

We conclude that for the correlated states under consi
ation @Eqs. ~26! and ~29!#, initial correlations affect the dy-
namics through theamplitude of the density, which in ab-
sence of pair creation is no longer universal. We ha
observed that when there are pairs created, without p
annihilation, the density decays for the two classes of co
lated states~26! and ~29! as anuniversalpower law.

D. Comparison with traditional free-fermion methods

In this subsection we discuss and compare the appro
devised in this work for the study of the DPAC model wi
the free-fermion methods@4,5,2,10,11,15,18,21#.

In most traditional free-fermionic methods, the stochas
Hamiltonian~1! is recasted via a Jordan-Wigner transform
tion in ~free! fermion form. The resulting quadratic~but gen-
erally neither Hermitian nor normal! Hamiltonian is then re-
formulated in the Fourier space. As the resulti
Hamiltonian is quadratic, the time dependence of the ope
tors is simple. Such an approach is well adapted for tran
tionally invariant systems and has been extensively used
the study of the DPA model~wheree850) with homoge-
neous initial density. Explicit results have, in particular, be
obtained for initially empty and full lattice as well as fo
initial densityr(0)51/2 ~see, e.g.,@4,2,11,18#!.

Another approach consists in diagonalizing the~free-!
fermion version of the DPACstochastic Hamiltonian
through a Bogoliubov type rotation, dealing, in Fouri
space, with a diagonal quadratic form of the so cal
pseudofermions@5,21#. This method is particularly efficien
for the DPAC model in the presence of pair creation (e8
.0) but concrete results only have been obtained for lat
initially empty or completely filled@5,21#.

Let us also mention that some exact results have also b
obtained for particular nonuniform initial distribution for th
DPA and DPAC models@11,20#.

Here, to illustrate the approach devised in this work in t
translationally invariant situation, we have recovered kno
results for the density for both DPA and DPAC models~19!,
~21!, ~22!, ~24!, and~28! and have extended these results
the case of arbitrary initial density~18!, ~20!, ~23!, ~25!, and
~27!. These results should, in principle, be also accessible
the traditional methods described above but in the case
arbitrary initial density 0<r(0)<1, the computations re
quired are tedious. On the contrary, with the approach
vised here, previous results are recovered in a simple
2-8
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systematic manner. Although the long-time behavior of
DPA does not depend onr(0), this is not the case for the
general DPAC in the presence of pair creation where
dynamics is no longer universal but depends onr(0)
@through the amplitude and the power law, see Eqs.~18!,
~20!, ~21!, and ~23!#. Therefore, whene.0 ande8.0, the
study of the long-time behavior of the density with respec
the initial density is relevant. An important advantage of t
present method is the fact that it is based on an exp
generating function that allows the systematic computa
of multipoint correlation functions. In addition, the metho
employed in this work provides explicit results that are b
yond traditional methods: the results~14!–~16! are specific
to this approach and are valid for arbitrary initial distributio
~uniform, nonuniform, correlated, etc.!. Furthermore, this ap
proach does not make use of the Jordan-Wigner transfor
tion and so we are not limited to deal with nearest-neigh
correlations@see Eqs.~29!–~31!#. Another advantage of the
present approach is that it can be extended to the cas
site-dependent DPAC model and will also be useful in
study of disordered version of this model@8#. In this sense
the present approach is complementary to the previous o

VI. DENSITY AND NONINSTANTANEOUS
CORRELATION FUNCTIONS FOR DPACI MODEL

In this section, we consider the model described by
stochastic HamiltonianHDPACI5HDPAC1Hinput @according
to Eq. ~2!# whereHDPAC andHinput have been defined pre
viously @in Eqs.~1! and~3!, respectively#. From a theoretical
point of view this model is interesting because it is one c
where ~nontrivial! nonequilibrium ~the detailed balance i
violated! steady states can be computed exactly.

To proceed with this study following the original ap
proach of Racz@6#, we first establish the equations of motio
of the two-point correlation function of the dual counterp
of these models, i.e.,ĤDPAC @defined in Eq.~6!# and Ĥ input

@defined in Eq.~7!#, respectively.
We obtain the equations of motion of the correlation fun

tions as (d/dt)^ŝm
z ŝm1 l

z &52^@ŝm
z ŝm1 l

z ,ĤDPAC1Ĥ input#&.
For the translational invariant situation, we adopt the follo
ing notation (l .0): r l(t)[^ŝm

z ŝm1 l
z &(t)5^ŝ0

zŝ l
z&(t). For

the nontranslational invariant situation, we definer m1 l ,m(t)
[^ŝm1 l

z ŝm
z &(t).

For the translational invariant system, the equation of m
tion of the two-point correlation function is (c̃5” 0):

d

dt
r l522$b1g lQ~L2 l !%r l~ t !1 c̃$r l 11~ t !1r l 21~ t !%

~32!

with the boundarycondition r 051, whereQ(L2 l )51 for
l ,L andQ(L2 l )50 for l 5L.

For the nontranslationally invariant case, we consider
unbiased version of the DPAC model@Eq. ~1! with h5h8
.0, i.e., Lushnikov’s model# and the equation of motion o
the correlation functions then reads (l .0)
05611
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d

dt
r m1 l ,m522@b1g$2mQ~L2m!1 l %#r l~ t !

1c@r m1 l 11,m~ t !1r m1 l 21,m~ t !1r m1 l ,m11~ t !

1r m1 l ,m21~ t !# ~33!

with the boundary conditionr 0,051.
~i! We start with the translationally invariant proble

~32!.
The steady stater̄ l corresponding to this situation obey

the difference equation

2$b1g lQ~L2 l !% r̄ l5 c̃~ r̄ l 111 r̄ l 21!. ~34!

To solve Eq. ~34!, we make the ansatzr̄ l5AJl 1a( c̃/g)
@whereJn(v) is the Bessel function of first kind# and take
into account the following property of Bessel function
Jn11(v)1Jn21(v)5(2n/v)Jn(v).

Therefore a5b/g2Ld l ,L . Taking into account the
boundary conditionr 05 r̄ (0)51, the constantA follows as:
A5@Jb/g( c̃/g)#21. The steady state of the density for th
translationally invariant systems described by Eq.~34! reads
r̄ l5Jl 1b/g2Ld l ,L

( c̃/g)/Jb/g( c̃/g). To solve the dynamica

equation~32!, we seek a solution in the form@6,16#, r l(t)
5 r̄ l1( l 8ql 82 le

22l l 8c̃t.
With this ansatz,~32! reduces to the following difference

equation: ql 82 l 111ql 82 l 215(2/c̃)@b2 c̃l l 82g lQ(L
2 l )#ql 82 l , which is solved as above with an ansatz,ql 82 l

5Bl 8Jl 82 l 1b( c̃/g). We thus findb5(b2 c̃l l 8)/g12l 2 l 8
2Ld l ,L , where thespectruml l 8 is determined by the bound
ary conditionr 051, which impliesql 850 and imposes the
condition

J(b2 c̃l l 8)/g~ c̃/g!50 ~35!

The constantsBl 8s are fixed by the initial condition
( l 8ql 82 l5r l(0)2 r̄ l5( l 8Bl 8J(b2 c̃l l 8)/g1 l 2Ld l ,L

( c̃/g).

Finally, from the the spectrum of$l l 8% defined by Eq.
~35! andBl 8 defined above, the solution of Eq.~32! follows

r l~ t !5 r̄ l1(
l 8

Bl 8e
22l l 8c̃tJ(b2 c̃l l 8)/g1 l 2Ld l ,L

~ c̃/g!,

~36!

where the inverse of the relaxation time, sayl* , is deter-
mined from the smallest zero of the Bessel function~35! and
the steady state has been obtained above.

With the definition of the duality transformation~5! as in
Eq. ~14!, we obtain for the density of particlesr(t),

r~ t !5
12r 1~ t !

2
5r~`!2(

l 8

Bl 8
2

e22l l 8c̃tJ(b2 c̃l l 8)/g11~ c̃/g!,

~37!
2-9
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where the steady state isr(`)5(12 r̄ 1)/25 1
2 @1

2J(11b/g)( c̃/g)/J(b/g)( c̃/g)#. In the absence of pair creatio
(e850⇒b5 c̃5e.0), we recover the results of@6# ~with
b5 c̃5e51).

Following Ref.@6#, we can now study the relaxation tim
in the limit of a weak source~i.e., wheng!1) and analyze
its interplay with the pair-creation term@described by (b
2uc̃u)/2#. For the DPAC model, wheree8.0 andg50, we
have seen in Sec. V that the density~for translationally in-
variant systems! decays exponentially fast in time a
;exp@22(b2uc̃u)t#. In @6# it has been shown that in the ab
sence of pair creation~i.e., b5 c̃5e.0) the density of the
DPAI model decays as;e2g2/3t. Here we will study the case
where both pair creation (b. c̃.0) and the source term (g
>0) are present.

As we focus on the smallest valuel* of the spectrum
$ul l 8u%, we considerg!1. In this limit, we obtain an explicit
relation that$l l 8%s have to fulfill in terms of the zero’sal 8 of
Airy function @Ai( al 8)50#, namely, @m(11l j )21#/(1
2ml j )

1/35(g2/2b2)1/3uaj u, where m[ c̃/b ~with umu>1)
and theal ’s are real and negative.

In the presence of pair creation@i.e., whenb.uc̃u#, one
has to consider the above equation , which should be so
for the ~infinite! set ofaj ’s. In doing so, we would obtain the
spectrum$l j%, which in turn provides the inverse of th
relaxation timel* [min($ul j u%). Here, we prefer to focus on
g!1 andm&1, i.e., we assume that the pair creation term
also ‘‘small’’ ( e8!1). Therefore, the spectrum obeys t
following equation: l j5@3m/(m12)#@(g2/2b2)1/3uaj u11
2m#. In the absence of pair creation~i.e.,m51), we recover
the result of@6#, l j5(g2/2b2)1/3uaj u.

The inverse of relaxation timel* follows (g!1, e8!1,
andm&1)

l* 5
3c̃

c̃12b
F S g2

2b2D 1/3

ua1u1
b2 c̃

b G ~38!

Thus the long-time behavior (bt.uc̃ut@1, g!1,e8!1, and
m&1) of the density reads@see Eq.~38!# r(t)2r(`);
2(B* /2)e22l* c̃t, whereB* corresponds to the termBl 8 for
which l l 85l* .

~ii ! Let us now pass to the nontranslationally invaria
situation. In this case, we have to solve the line
differential-difference equation~33!. To do this, we follow
the same prodedure as above. The steady stater̄ m1 l ,m is
inferred from the ansatzr̄ m1 l ,m5A@Jm1 l 1a(c/g)#2 and ob-
tain a5b/2g2 l /22Ldm,L . Taking into account the bound
ary conditionr̄ m,m51 we find (l .0),

r̄ m1 l ,m5~@Jm1 l /21b/~2g!2Ldm,L
~c/g!#/

@Jb/~2g!1m2Ldm,L
~c/g!#!2.

Hereafter for notational simplicity, we will denotelm8,l 8
simply by l.
05611
ed
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To solve the dynamical equation~33!, we seek a solution
of the form

r m1 l ,m~ t !5 r̄ m1 l ,m1(m8,l 8e
22lctqm81 l 82m2 l ,m82m

and obtain the solution of Eq.~33!,

r m1 l ,m~ t !5 r̄ m1 l ,l1 (
m8,l 8

Am8,l 8e
22lct

3J[ ~b2cl)/g#1m2Ldm,L
~c/g!

3J[ ~b2cl)/g1m#1 l 2Ldm,L
~c/g!, ~39!

where the boundary conditionqm81 l 82m,m82m50 deter-
mines the spectrum$l% through the condition

J(b2cl)/g1m2Ldm,L
~c/g!50. ~40!

The constantsAm8,l 8 follow from the initial conditions.
With Eqs.~14! and~39!, we obtain the density of particle

(m,L),

^nm11&~ t !5^nm11&~`!2
1

2 (
m8,l 8

Am8,l 8e
22lct

3J(b2cl)/g1m~c/g!

3J(b2cl)/g1m11~c/g! ~41!

with

^nm11&~`!5
1

2F12S Jm11/21b/~2g!~c/g!

Jm1b/2g~c/g! D 2G . ~42!

~iii ! From the solution~41! for the density in the nontrans
lationally invariant situation, we can obtain the noninstan
neous two-point correlation functions of the~unbiased!
DPACI model.

With p21<m,L,

^nm11~ t !np~0!&2^nm11~`!&

52 (
m8,l 8

S Bm8,l 8
2 D

3e22lctJ(b2cl)/g1m~c/g!

3J(b2cl)/g1m11~c/g!.

The only change from Eq.~41! is in theBm8,l 8 that are fixed
from the initial conditions.

The spectrum$l% again follows from Eq.~40! and pro-
vides the inverse of relaxation timel* asl* 5min($ln, j%).

With n[m2Ldm,L, in the limit gunu!1, e8!1 with m
'1, the spectrum satisfy the equation

ln, j'S ~b12gn!

c
2

~2g!

@c~2m21!3/2#

3[221/3uaj u12mn~~2g!b!1/3] 3/2D ,
2-10
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whereaj,0 are again the zeros of the airy function.
It has to be emphasized that steady states obtained for

DPACI model are nonequilibrium steady states in the se
that they violate the detailed-balance condition. In the DP
model ~where g50), the steady states were expressed
terms of the quantityz @with r(`)5(12z)/2# first intro-
duced by Glauber@16# to describe the steady state of th
time-dependent Ising model~with the prescription of recov-
ering, as steady state, the thermal equilibrium!. Thus, in this
sense the steady state of the DPAC model is reminiscen
the states in equilibrium statistical mechanics. On the c
trary, the steady states of the DPACI model are genuine n
equilibrium steady-states.

VII. CONNECTION WITH THE COAGULATION MODEL

In this section we translate the results obtained so far
the DPAC model to another, free-fermionic model of s
chastic hard-core particles on a lattice, namely, the diffusi
limited coagulation~DC! model. In this model, particles ca
jump from a siter to an adjacent site~provided it was vacant!
with ratesh (B1A→A1B) andh8 (A1B→B1A). Two
adjacent particles at sitesr andr 21 can coagulate with rate
h(A1A→A1B). Two adjacent particles at sitesr and r
21 can also coagulate with rateh8 (A1A→B1A).

It is known that~for initially uncorrelated systems! there
is an exact duality between DPA model~where there is no
pair creation:e8[0) and the coagulation model~see, e.g.,
@4,11,19,22#, and references therein!. Here we briefly recall
the transformation connecting these two stochastic mo
and translate the results of the DPA model.

Applying the similarity transformation@4,11,19,22#, H̃
5BHB 21, B[B^ B^ •••^ B5B^ L, where

B[S 1 21

0 2 D ,

the ~stochastic! HamiltonianH of the DPA model become
the ~stochastic! HamiltonianH̃ of the coagulation model.

For the coagulation model@with initial stateuP8(0)&#, we
can express the correlation functions with help of correlat
function of the DPA model. The density of the DC the
reads ^nj (t)& uP8(0)&

DC
52^nj (t)&B 21uP8(0)&

DPA . For the two-point
correlation functions, we have ^nj 1r(t)nj (t)& uP8(0)&

DC

54^nj 1r(t)nj (t)&B 21uP8(0)&
DPA and ^nj 1r(t)nj (0)& uP8(0)&

DC

52^nj 1r(t)nj (0)&B 21uP8(0)&
DPA

As an illustration, let us now provide the density of th
DC model from the expressions obtained for the DPA mo
~wheree8[0) as@see Eq.~14!#. The density of the transla
tionally invariant DC model with uncorrelated initial sta
uP8(0)&5@12r(0)r(0)#T ~of initial densityr) is related to
the unbiased version of the DPA model with initial dens
r(0)/2. Thus, in this situation, with Eq.~14!, we obtain for
the density of DC model
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rDC~ t !5e22(h1h8)tH I 0$2~h1h8!t%1I 1$2~h1h8!t%

2(
s.0

$12r~0!%s@ I s21$2~h1h8!t%

2I s11$2~h1h8!t%#J . ~43!

As for the DPA model, for translationally invariant system
the instantaneous correlation functions do not depend on
biash2h8. We could also extend in a similar manner all th
results obtained in Sec. V to the DC model. The discuss
of the long-time behavior ofrDC(t) follows directly from
that of the DPA model given in Sec. V B.

VIII. SUMMARY AND CONCLUSION

This work provides a complete and unified solution
some related one-dimensional nonequilibrium models.

In the first part we have solved the diffusion-limited pa
annihilation-creation ~DPAC! model ~under the free-
fermionic constraint! by an approach, alternative an
complementary to the traditional free-fermion method
Combining domain-wall duality@4,2# with a recently devel-
oped technique@3#, we were able to compute the generati
function of the dual of the DPAC model~Sec. IV!, i.e., to
obtain correlation functions~Sec. V!. In this paper, we take
advantage of this approach to recover results previously
tained @see Eqs.~19!, ~21!, ~22!, and ~28!# by traditional
methods, extend these@see Eqs.~18!, ~20!, ~23!, ~24!, ~25!,
and~27!# and derive original ones@see Eqs.~14!, ~15!, ~16!,
~30!, and ~31!# in a simple manner. The method is ve
promising for site-dependent and disordered systems@8#. We
focused on the density, the staggered-current, and the
point correlation functions~instantaneous and noninstant
neous! @see Eqs.~14!, ~15!, and~16!#. In particular, we stud-
ied explicitly the density~in absence as well as in presen
of pair-creation! for translationally invariant systems wit
arbitrary initial density and have discussed the asympt
behavior of these quantities in different regimes. We o
tained explicit expression of the staggered current in a
trary translationally invariant~uncorrelated but random! ini-
tial conditions@see Eq.~25!#. We investigated the densitie
for two classes of correlated~but translationally invariant!
systems. We have computed explicitly the noninstantane
two-point correlation functions for initially translationally in
variant and uncorrelated~but random! states: these quantitie
depend on an eventual bias~contrary to instantaneous corre
lation functions!. As a by product, we provided the solutio
of a biased generalization of Glauber’s model, which is
dual counterpart of the DPAC model.

In the second part we studied the density and nonins
taneous two-point correlation functions of the diffusio
limited pair-annihilation-creation model in the presence
source of particles~DPACI model!. Via the domain-wall du-
ality transformation, we solved exactly the equations of m
tion of the correlation functions of the dual model. We o
tained the exact density and steady states for translation
2-11
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invariant as well as nontranslationally invariant systems.
also computed the noninstantaneous two-point correla
functions. In particular, for the translationally invariant sit
ation in the absence of the pair-creation term, we recove
the density first computed by Racz@6#. We extended these
results to the case where both the pair-creation terme8
.0) and source term were present (g.0) and obtained the
relaxation time for the case when bothg!1 ande8!1 @see
Eq. ~38!#.
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In the last part of this work, we have shown how to tran
late the results obtained for the DPA model to the diffusio
limited coagulation~DC! model.
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